
Machine ballets don’t need conductors
Towards scheduling-based service choreographies in a real-time SOA for industrial automation

Thomas Kothmayr, Alfons Kemper
Chair for Database Systems,

Technische Universität München, Germany
{kothmayr, kemper}@in.tum.de

Andreas Scholz, Jörg Heuer
Corporate Technology, Siemens AG

{andreas.as.scholz, joerg.heuer}@siemens.com

Abstract—Today’s manufacturing industry is under pressure to
increase the flexibility of its factory lines. One approach to achieve
this goal is the shift from centralized control systems towards dis-
tributed, service-oriented architectures (SOA). To fully leverage
the benefit of this new paradigm, the SOA should extend down
to the device level and even include resource-constrained devices,
such as smart sensors and actuators. In this paper, we present
our approach for a lightweight distributed service choreography
without a central point of control. It is based on network-
aware precalculation of a static, non-preemptive schedule for
each device and is thus suitable even for constrained devices.
In contrast to previous work, our focus lies on the planning
components required for achieving a service choreography. Since
scheduling is a central part of our architecture, and we expect
it to be executed many times during the planning process, we
evaluate different heuristics for this task.

I. INTRODUCTION

Manufacturing and process industries are under pressure
from shortened product life-cycles, smaller lot sizes and de-
mands for reducing the time to market for each new product.
Traditional manufacturing plants do not scale well under these
new requirements because the cost for installation and setup
are constituting a considerable portion of their total life-cycle
costs [1]. The problem stems from the inflexible design of
traditional manufacturing systems: Centralized, monolithic and
scan-based control systems are optimized for a given physical
and network configuration. They are tightly coupled with their
environment which hinders modularization and reuse.

The hardware side is already changing today: industrial
Ethernet is gaining traction [2] while smarter embedded de-
vices are performing an increasing number of orthogonal tasks,
for example wireless sensor networks (WSNs) monitoring
machine health. These developments shift the pressure to the
software side where the traditional design paradigm of cen-
tralized control for the main automation tasks still reigns. IT
outside of manufacturing often has to deal with similar issues
and has responded by employing service-oriented architectures
(SOAs) to integrate different systems into changing business
processes. In industry, SOAs are already being introduced for
non-critical functions outside of the main automation task,
such as reporting and supervision as well as integration with
higher level enterprise systems [3]. We propose a service-
oriented architecture, called rtSOA, for the hard real-time
control tasks handled by embedded devices. The control task
is described by a workflow of discrete but interdependent

t1
t 2

t6

Machine A

t3

Machine B

t4

t5

Machine C

A B C A B C A B C
Network Timeline

Fig. 1: A distributed workflow (striped, arrows indicate mes-
sage flow) on three machines and a TDMA based network.

jobs. Timing restrictions on a per-job level are only derived
from global constraints when binding a set of workflows to
machines in a network. This approach allows for a separation
of concerns: While specifying workflows, an engineer is freed
from timing constraints from the hardware and network. To
fully leverage the distributed control paradigm facilitated by
the IoT model, devices should be able to follow a local sched-
ule but achieve global cooperation without central coordination
[4]. In SOA terms this is called a service choreography, which
stands in contrast to service orchestration. Like dancers in a
ballet, devices participating in a service choreography follow
a local set of rules without a central entity overseeing the
process. Devices in a service orchestration are managed by
an orchestration server which is akin to a conductor guid-
ing individual musicians in an orchestra. This would simply
repackage the centralized model described above and incur
similar problems. In our model only the planning is performed
centrally. The output is a static, local schedule for each device.
Devices cooperate in a distributed service choreography by
executing these schedules locally and communicating over a
deterministic real-time network, as illustrated in Figure 1.

Related work (Section II) has often followed the orches-
tration approach. Our architecture (Section III) is targeted
at constrained embedded devices and must therefore deliver
a lightweight service choreography that nevertheless is able
to achieve hard real-time guarantees. From a suitable sys-
tem specification (Section III-A) a planning process is trig-
gered (Section III-B) which produces a cyclic, non-preemptive
schedule for each device. The feasibility of this architecture
hinges on the ability to quickly solve a large number of
local scheduling problems. We therefore evaluate scheduling
heuristics in Section IV. Our conclusions and open research
questions are presented in Section V.

II. RELATED WORK

A shift towards service-oriented architectures in the automa-
tion domain is evident both in academia as well as in industry.
Section II-A will briefly outline important specifications in the
industrial domain before Section II-B presents related work
with a focus on EU research projects dealing with SOA for
industrial applications.

A. Industry

The two most prominent specifications concerning service
orientation for industrial devices are the Devices Profile for
Web Services (DPWS) [5] and the Object Linking and Embed-
ding for Process Control Unified Architecture (OPC UA) [6].
Both are conceptually similar: They implement a SOA through
Web Services and rely on built-in base services for discovery
and service reservation. In both cases, SOAP over HTTP is
the standard message binding and messages are either encoded
with XML or in a binary format for increased performance.
The main difference is in their intended target area. OPC UA
is a service-oriented version of the original OPC architecture
and its main mission is still to connect industrial devices to
control and supervision applications [7]. It is therefore not
directly aimed at the communication between the devices
themselves and follows a client-server architecture. In contrast,
DPWS is a Web Service middleware and profile that aims to
constrain the WS-* set of standards to make them suitable for
embedded use. It is aimed directly at the devices performing
the automation task and therefore supports a peer-to-peer as
well as a client-server architecture. DPWS is therefore more
general-purpose whereas the application for OPC-UA is more
specific. OPC-UA includes a dedicated Object Model whereas
the data model in DPWS is not standardized. Cândido et. al
[7] give a more detailed comparison of DPWS and OPC UA.

Our vision for rtSOA is more closely related to DPWS,
meaning it is also aimed at the device level and meant to
enable peer-to-peer communication. However, rtSOA is aimed
at cyclic hard real-time control tasks instead of general purpose
discovery and eventing like DPWS. To ensure that rtSOA
can provide the required real-time guarantees we are relying
on an offline planning phase which will generate a fixed
resource reservation for each device. Discovery and especially
device description (see Section III-A) could be implemented
following the DPWS specification. Thus, rtSOA can be seen
as orthogonal to industry standards like DPWS.

B. Academia

A large body of work has been published around service-
oriented architectures for the automation domain, including
work performed in several EU programs. The SIRENA project
provided the first embedded DPWS stack [8] and the closely
related SODA project extended the SIRENA framework by
providing a toolkit for manageability, orchestration and se-
curity [9]. Together, these projects proved the feasibility of
Web Services on embedded devices. The RI-MACS project
uses DPWS compliant services for soft real-time and best-
effort tasks [1]. For performance reasons, it opts for a separate

communications stack besides DPWS to fulfill hard real-time
requirements. The SOCRADES project built on the SIRENA
and SODA results to further the vertical cross-layer integration
between shop floor and enterprise systems [3]. The AESOP
project investigates the feasibility and limits of using a SOA-
based approach inside control loops [10]. By implementing
several prototypes, it closely investigates the performance
implications of using Web-Services for the concurrent control
of several thousand devices.

SIRENA, SODA and SOCRADES achieved the horizon-
tal integration of industrial control devices with higher-level
enterprise systems. Since our work on rtSOA is focused
on providing hard real-time guarantees on the underlying
device level RI-MACS and especially AESOP are conceptually
similar projects. AESOP showed the feasibility for integrating
embedded devices in a control loop through a SOA. Our work
therefore argues that message exchange in a control loop is
possible by leveraging one of the protocol stacks investigated
by AESOP [10]. Additionally, work performed inside the
AESOP project has already pointed out that a distributed,
choreography-based approach to SOA is preferable to the
classical orchestration-based approach [4]. Our work focuses
on the central planning required to achieve performant, hard
real-time choreographies for devices in a tight control loop.

Research efforts outside of the mentioned EU projects
include the RT-Llama [11] iLAND [12] middlewares for a real-
time SOA. As our work, RT-Llama also follows a reservation-
based approach and uses end-to-end workflow reservation to
achieve timing guarantees. However, its execution model re-
quires devices to have at least two cores [11] which makes RT-
Llama not applicable to deeply embedded devices in industrial
automation. In this domain, multicore architectures are neither
always available, due to cost restrictions for small embedded
devices, nor always desirable due to the increased difficulty
multicores cause in timing analysis [13]. The iLAND mid-
dleware supports time-bounded reconfiguration in distributed
soft real-time SOAs [12]. Apart from the focus on soft real-
time systems, it is also conceptually similar to our approach
because it deals not only with issues of service composability
but also takes end-to-end timing constraints into account. The
bounded-time online reconfiguration performed by iLAND is
not an explicit goal of the rtSOA architecture, although our
planning algorithms should be sufficiently fast to allow a
smooth development flow. In contrast to iLAND, rtSOA is
aimed at hard real-time systems.

III. SYSTEM ARCHITECTURE

The target platforms for our real-time SOA are devices
in factory and process automation. This spans from large
PC control systems to tiny embedded devices, such as smart
sensors or actuators. We use the term smart device to describe
a sensor or actuator that is attached to a system on a chip
with several kilobytes of memory, a CPU clock rate of a few
Megahertz and integrated networking capability. We do not
assume that any advanced real-time operating system (RTOS)
is available.

Because our goal is to provide real-time guarantees in
a distributed system, the network also needs to offer such
guarantees. We therefore assume all devices SOA control loop
are connected by a real-time capable network with bounded
message delays. The predominant message exchange mode in
industrial control applications is cyclic, we thus also assume
a cyclic communication model. In this model, each network
cycle is divided into a number of time-slots that are assigned
to a device, i.e., TDMA. We do not assume a master-slave
relationship on the system or network level. Each device can
potentially send data to any other device in the network.

Based on these underlying assumptions, the main question
that still needs to be answered is “How can a hard real-time
automation task be executed on a distributed IoT architecture
with heterogeneous devices?”. First, the automation task needs
to be specified in such a way that all relevant information is
available in the planning stage. We outline the specification
process in Section III-A before detailing the steps taken in the
planning phase in Section III-B.

A. Specification

There are two separate domains that need to be speci-
fied when deploying a SOA in the industrial context: the
process and the environment in which it will be executed.
The environment consists of the devices which partake in the
automation process, the physical capabilities of each device
(e.g., provide sensor data, high computational capability, etc.)
and the characteristics of the network, which connects the
devices. Previous work has demonstrated that web service
technology can be leveraged in the embedded context and
standardization efforts for DPWS are well under way. The
capabilities of a device can therefore be described, advertised
and discovered through industry standards (Section II-A).
Service discovery at run time is not required for planning
and deployment of the control cycle but offers possibilities
for seamless integration into less time critical applications.
Similarly, the rtSOA planner does not require run time dis-
covery of network particularities. Our working assumption is
that the network configuration, including addressing, message
delay and TDMA slot assignment, is made available to the
planner together with matching device descriptions.

There are two obvious starting points for specifying the
composition of services into automation tasks: Either from the
domain of PLC languages or Web-Service composition stan-
dards. Many of today’s automation processes are programmed
following one of the five languages of the IEC 61131-3
standard. Of these the best conceptual matches to service
composition are either sequential function charts (SFCs) or
function block diagrams (FBDs). In enterprise IT, the Business
Process Model and Notation (BPMN) is a leading standard for
the graphical specification of service workflows and can be
mapped to the Business Process Execution Language (BPEL).
Neither domain provides a direct candidate for the modeling of
distributed automation processes in a real-time SOA. BPMN
is a better fit for the composition of services, but most
execution models are aimed at a Web-Service orchestration

getTemp

req:TempSens

average3
driveHVAC

req:TempAct
setpointComp

getTemp

req:TempSens

getTemp

req:TempSens

22°C

19°C

2b

2b

 8b 2b 8b

8b

8b

Lo

Hi

500ms 125ms

Fig. 2: Example workflow in annotated FBD. The workflow
has a period of 500ms with a 125ms deadline. The con-
nectors between blocks carry the message size in byte. The
setpointComp block is initialized with constants.

instead of choreography. Additionally, BPMN lacks support
for the timing constraints central to industrial automation and
the conceptual overhead of the business domain is unnecessary
for the automation domain. In our view, a service composition
based on concepts from IEC 61131-3 SFCs or FBDs is more
promising for the automation domain. Function blocks could
be mapped to individual services and annotated with their
physical requirements (e.g., for a sensor to be present on a
device) and their worst case execution time (WCET) on the
devices for which an implementation exists. The connections
between blocks would need to be annotated with the maximum
size of messages passed between two blocks. The FBD would
finally be annotated by global timing requirements for the
period and relative deadline of the workflow it contains.
Figure 2 is giving an example of modeling a workflow with
FBDs. In our current architecture we are placing one further
restriction on the workflow structure: The workflow has to
follow an in-tree structure, meaning that a service can have an
arbitrary number of predecessors but only one successor. This
is intended to facilitate easier analysis and planning because
there is only one information sink in each workflow. Future
work will asses whether this requirement can be relaxed to
general directed acyclic graphs (DAGs).

B. Service Choreography

To turn the specification from the previous section into
a runnable system that provides real-time guarantees more
planning is required. The goal of the rtSOA system is to
provide a service choreography, meaning that each device
fulfills its part to cooperatively realize the automation task.
The output of the rtSOA planning stage is a static, non-
preemptive, cyclic schedule for each device. Powerful devices
with advanced RTOS features are thus not required but can
be leveraged to provide additional quality of service (QoS)
levels beneath the critical RT task. Multiple CPUs or multicore
CPUs on a single device are currently not modeled explicitly
but could be leveraged by pinning a separate schedule to each
core. Timing side effects from parallel execution [13] are still
an active research area and outside of the scope of our current
architecture. Figure 3 is giving an overview of the planning
steps necessary in our architecture.

Planner

B1
A2

A

D

A1
B1

Scheduler

Scheduler

Runtime

Runtime

Network
Topology

Workflows

A
s
s
ig

n

C
o

n
s
tr

a
in

 S
c

h
e

d
u

le

S
c

h
e

d
u

le

E
x
e

c
u

te

E
x
e

c
u

te

Feedback

Fig. 3: Architecture overview

The first step in Figure 3 is the assignment of jobs to
devices. This is performed by an engineer and the system only
checks the validity of this assignment, i.e. whether or not all
jobs are assigned and if a job’s device offers all capabilities
required by the job.

At this stage, each workflow is only annotated with end-
to-end constraints: A global deadline for the workflow and a
period. For a real-time service choreography, local constraints
for each job must be derived. This planning step requires
global knowledge and is centrally performed by the rtSOA
planning component. rtSOA takes into account the position
of a job in a workflow and the network slots assigned to
the device on which the job is placed. From this information
local deadlines and release times for each job in a workflow
are created. This deadline assignment problem is part of our
ongoing research.

The last step is the scheduling of the newly constrained
jobs on each device. The scheduling problem is NP-hard but
several good heuristics exist. Since we are only interested in
finding a feasible schedule, the most important characteristic
of a scheduling algorithm is which percentage of all feasible
schedules it can find in a given time budget. In this respect,
heuristics outperform exhaustive options, such as Linear Pro-
gramming. We provide more details in Section IV. Should
the heuristics fail in finding a feasible schedule, the deadline
assignment algorithm from the previous step can assign more
slack to jobs with violated deadlines to try and find an overall
service choreography.

Once a candidate choreography has been generated it should
be verified in terms of its functional and temporal correctness.
We propose the use of a simulation environment to achieve
this task. The simulator would have to simulate the devices
involved in the choreography as specified by the network and
device configuration. To verify temporal correctness, only the
temporal characteristics of each job on its assigned machine
are required (i.e., its WCET), so no complex system behavior
needs to be modelled in the simulation. This allows for an
automated generation of a simulation model from the rtSOA
planner input and output: The schedules generated by the

planner are simulated in the environment described by its input
and are checked for deadline violations. By further refining the
simulation, effects like the influence of jitter can be studied.

IV. SCHEDULING

Generating a static schedule for each device is an important
step in our planning approach. We use schedulability as an
admission test when assigning services to a device, in addition
to generating a schedule as the basis for the rtSOA service
choreography. Therefore we have two requirements for the
scheduling algorithm that we employ: It must be able to find
a feasible solution with a high probability and it must do so
in a very short time. We compared heuristic approaches with
a linear program (LP) solver in earlier work [14] and found
that the heuristics significantly outperformed the LP approach
in terms of efficiency, meaning their ability to find a feasible
solution within a given time budget. We more closely examine
the performance of heuristics for single machine scheduling of
deadline, release time and in-tree precedence constrained tasks
in this paper. The problem description has been taken from our
previous work [14].

A. Formal Problem Description

The scheduling problem analyzed here is as follows: Find
a feasible schedule for a set of jobs J = {j1, j2, . . . , jn}
with a fixed integer processing time wceti on a single, non-
preemptive machine. Additional constraints are: Each job ji
has either exactly one successor jk, written as ji ≺ jk, or no
successor. A job may be annotated with a deadline di and a
release time time ri. Since the generated schedule is expected
to be executed cyclically, a maximum schedule length D is
defined. It is enforced by the root element Ω with wcetΩ =
0, dΩ = D and rΩ = D. If ∅ ≺ j set Ω ≺ j, thus transforming
the structure of J ∩Ω into a single in-tree. If no values for ri or
di are given, 0 and D are assigned by default. The objective
is minimizing the number of tardy jobs ΣUj . We are only
interested in finding a schedule that has no tardy jobs at all.
In the traditional notation of scheduling theory we can express
our problem as 1|rj , in-tree|ΣUj .

16 32 48 64 88 128

70%

80%

90%

100%

Number of jobs

E
ffi

ci
en

cy
EDF BLOCK Potts’ ERF

Fig. 4: Percent of test cases solvable by each method

B. Heuristic Approaches

We compare earliest release time time first (ERF), earliest
deadline first (EDF), the BLOCK heuristic [15] and Potts’
algorithm [16].

Earliest release time time first: The ERF heuristic simply
sorts all jobs in J ∪ Ω by ascending order of their release
time. If two jobs have the same release time, then their
deadlines are used as a tiebreaker. Precedence constraints
should be mapped to modified release times by applying:
∀ji, jkεJ ∪ Ω : ji ≺ jk =⇒ r′k = max{rk, ri + wceti}

Earliest deadline first: In contrast to the ERF heuristic we
cannot simply sort jobs by their deadline because that could
lead to violation of precedence constraints. EDF instead
chooses the leaf of the tree with the earliest deadline jd and
the leaf with the earliest release time jr. If jr can be scheduled
before jd without conflict, i.e., rr + wcetr ≤ rd, schedule jr
first, otherwise jd. The scheduled leaf is then removed from
the tree and if all predecessors of a job have been scheduled
that job is then added to the set of available leaves. Effective
deadlines for each job should be computed beforehand as:
∀ji, jkεJ ∪ Ω : ji ≺ jk =⇒ d′i = min{di, dk − wcetk}

BLOCK heuristic: The BLOCK heuristic [15] first sets up a
schedule by ERF and divides it into blocks of jobs which are
executed with no time delay between them. If the schedule
is invalid, the heuristic adjusts the block by scheduling jobs
with higher deadline towards the end of the block.

Potts’ algorithm: Potts’ algorithm [16] is setup by sorting
tasks by their deadlines in topological order. If the schedule
is invalid, it analyzes the critical sequences of the schedule,
i.e., blocks of jobs where at least one job has an invalid
deadline (= critical job jcrit). An interference job jint is a
job within a critical sequence that is scheduled before jcrit
but has a higher deadline than dcrit. rint < rcrit must hold,
since jint would otherwise not have been scheduled this early.
Interference jobs are thus scheduled after their corresponding
critical jobs to reduce the amount of tardy jobs.

32 64 88 128
0 ms

0.5 ms

1 ms

1.5 ms

2 ms

A
ve

ra
ge

ru
nt

im
e

128 512 1,024
0 ms

20 ms

40 ms

60 ms

EDF BLOCK Potts’ ERF

Fig. 5: Average run time of the heuristics

C. Evaluation

The evaluation was performed on randomly generated in-
tree workflows with 16 to 128 jobs. The run time of the
heuristics was additionally evaluated for up to 1 024 jobs. The
amount of deadline and release time constraints per workflow
is uniformly distributed between one and |J |. Similarly, the
schedule utilization (Σwceti/D) was uniformly distributed
between zero and one. Since the goal of the evaluation is to
evaluate the efficiency of a scheduling algorithm, i.e., for how
many of the feasible workflows it can find a valid schedule,
infeasible workflows had to be discarded first. As no optimal
algorithm for the non-preemptive case exists we employ the
preemptive least laxity first algorithm (LLF) to filter out
definitely unschedulable workflows. LLF has been shown to
be optimal for the preemptive single machine case [17]. Any
workflow that is not schedulable in the preemptive case will
remain so in the non-preemptive case. LLF discarded about
half of the generated workflows as unsolvable, the remaining
20 503 jobs where then scheduled with each of the methods
described in Section IV-B. For only two of these jobs no
solution could be found with any of the employed methods,
meaning that we have 20 501 jobs which comprise our set of
feasible test cases. The test machines are equipped with an
Intel Q6700 CPU at 2.66GHz and 8 gigabytes of RAM.

As shown in Figure 4, EDF, BLOCK and Potts’ algorithm
all perform well with over 95% efficiency on average. Potts’
algorithm consistently performs at near 100% efficiency, there
were only 18 out of 20 501 test cases where it did not find
a solution, which equals an overall efficiency of over 99.9%.
The combination of Potts’ Algorithm, BLOCK and EDF finds
a solution for all but 8 test cases. Concerning the average run
time (Figure 5), all heuristics are performing well up until 256
jobs. The BLOCK heuristic is starting to take considerably
longer afterwards because its worst case run time complexity
is O(n3) whereas its typical complexity is closer to O(n2).
The same is true for Pott’s algorithm from a complexity
standpoint, but it holds up better in terms of run time. EDF
scales as expected from its complexity of O(n2). ERF is
actually underperforming in our implementation, considering
its theoretical complexity of O(n log(n)).

0% 25% 50% 75% 100%
90%

95%

100%

Schedule utilization

E
ffi

ci
en

cy
EDF BLOCK Potts’

Fig. 6: Percentage of solvable schedules found plotted against
schedule utilization. A utilization of 100% indicates that there
is no idle time in the schedule.

Figure 6 shows that Potts’ algorithm also performs very well
as the schedule utilization increases. EDF generally performs
well until 80% utilization whereas the BLOCK heuristic is
showing decreased performance for more than 35% utilization.
The picture is similar when looking at the amount of deadline
and release time constraints attached to a workflow in Figure 7.
The analysis is stopped after 165% because there where less
than 50 workflows that could be aggregated into each data
point from then on. Potts’ performs very stable again whereas
EDF is starting to drop of earlier. Interestingly, BLOCK
performs worse with only a small number of constraints.

In conclusion, we will use Potts’ algorithm for all schedul-
ing purposes in the rtSOA planner. It consistently outperforms
all other heuristics and has stable performance for large
scheduling problems. This allows us to forgo the use of
exhaustive search methods, such as LPs while still finding a
feasible schedule in almost all cases. The EDF heuristic can
be used as a second chance algorithm if Potts’ is unable to
find a schedule. The BLOCK heuristic could be used as a third
try for smaller problem instances.

V. CONCLUSION AND FUTURE WORK

We have presented our architecture for a real-time, service-
oriented architecture for industrial automation. It is based on a
distributed service choreography which is realized through ex-
plicit generation of a non-preemptive schedule. This schedule
can be executed by constrained devices with very few require-
ments in terms of operating system support. We have shown
that heuristics fulfill the requirements of our architecture both
in terms of run time and the efficiency in finding feasible
schedules. Our future work can therefore focus on another
key element of the rtSOA planning process: automatically
assigning local timing constraints to individual services so
that all global timing constrains are fulfilled. We further plan
to implement a demonstrator to show the feasibility of our
approach in the real world. Further work will address the issue
of reliability by generating choreographies with failover and
adaptive service placements.

0% 50% 100% 150%
85%

90%

95%

100%

Relative number of constraints

E
ffi

ci
en

cy

EDF BLOCK Potts’

Fig. 7: Percentage of solvable schedules found plotted against
percentage of constraints. The maximum amount of 200% and
is reached when every node has a release time and deadline

REFERENCES

[1] R. Checcozzo, F. Rusina, L. Mangeruca, A. Ballarino, C. Abadie,
A. Brusaferri, R. Harrison, and R. Monfared, “RI-MACS: an innova-
tive approach for future automation systems,” International Journal of
Mechatronics and Manufacturing Systems, vol. 2, no. 3, 2009.

[2] T. Moore, “The world market for industrial ethernet and fieldbus
technologies,” IHS/IMS Research, Tech. Rep., 2013.

[3] L. Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and D. Savio,
“SOCRADES: a web service based shop floor integration infrastructure,”
in The Internet of Things, ser. LNCS. Springer Berlin Heidelberg, 2008.

[4] G. Starke, T. Kunkel, and D. Hahn, “Flexible collaboration and control of
heterogeneous mechatronic devices and systems by means of an event-
driven, SOA-based automation concept,” in ICIT, 2013.

[5] OASIS, “Devices Profile for Web Services Specification (Version 1.1),”
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01, July 2009.

[6] OPC Foundation, “OPC Unified Architecture (OPC UA) Specifiations,”
http://www.opcfoundation.org/UA, 2008.

[7] G. Candido, F. Jammes, J. de Oliveira, and A. Colombo, “SOA at device
level in the industrial domain: Assessment of OPC UA and DPWS
specifications,” in INDIN, July 2010.

[8] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - Service Infrastruc-
ture for Real-time Embedded Networked Devices: A service oriented
framework for different domains,” in ICN/ICONS/MCL, April 2006.

[9] J.-F. Martı́nez, M. López, V. Hernández, K. Jean-Marie, A.-B. Garcı́a,
L. López, C. Herrera, and C.-J. Sánchez-Alarcos, “A security architec-
tural approach for DPWS-based devices,” in CollECTeR Ibéroamérica,
2008.

[10] F. Jammes, B. Bony, P. Nappey, A. Colombo, J. Delsing, J. Eliasson,
R. Kyusakov, S. Karnouskos, P. Stluka, and M. Till, “Technologies
for SOA-based distributed large scale process monitoring and control
systems,” in IECON, 2012.

[11] M. Panahi, W. Nie, and K.-J. Lin, “The design of middleware support
for real-time SOA,” in ISORC, 2011.

[12] M. Garcia Valls, I. Lopez, and L. Villar, “iLAND: An Enhanced Mid-
dleware for Real-Time Reconfiguration of Service Oriented Distributed
Real-Time Systems,” Industrial Informatics, vol. 9, no. 1, Feb 2013.

[13] R. Wilhelm and J. Reineke, “Embedded systems: Many cores - many
problems.” in SIES, 2012.

[14] T. Kothmayr, J. Hirscheider, A. Kemper, A. Scholz, and J. Heuer, “Com-
paring heuristics and linear programming formulations for scheduling of
in-tree tasksets,” in RTAS WiP, 2014.

[15] Z. Liu, “Single machine scheduling to minimize maximum lateness
subject to release dates and precedence constraints,” Computers &
Operations Research, vol. 37, no. 9, 2010.

[16] L. A. Hall and D. B. Shmoys, “Jackson’s rule for single-machine
scheduling: making a good heuristic better,” Mathematics of Operations
Research, vol. 17, no. 1, 1992.

[17] A. K. Mok and M. L. Dertouzos, “Multiprocessor scheduling in a hard
real-time environment,” in Texas Conf. Comput. Syst., 1978.

