
Mosaic: A Budget-Conscious Storage Engine for
Relational Database Systems

Lukas Vogel
TU München

lukas.vogel@in.tum.de

Alexander van Renen
TU München

renen@in.tum.de

Satoshi Imamura
Fujitsu Laboratories Ltd.

s-imamura@fujitsu.com
Viktor Leis

Uni Jena
viktor.leis@uni-jena.de

Thomas Neumann
TU München

neumann@in.tum.de

Alfons Kemper
TU München

kemper@in.tum.de

ABSTRACT
Relational database systems are purpose-built for a specific
storage device class (e.g., HDD, SSD, or DRAM). They do
not cope well with the multitude of storage devices that
are competitive at their price ‘sweet spots’. To make use
of different storage device classes, users have to resort to
workarounds, such as storing data in different tablespaces.
A lot of research has been done on heterogeneous storage
frameworks for distributed big data query engines. These
engines scale well for big data sets but are often CPU-
or network-bound. Both approaches only maximize perfor-
mance for previously purchased storage devices.

We present Mosaic, a storage engine for scan-heavy work-
loads on RDBMS that manages devices in a tierless pool and
provides device purchase recommendations for a specified
workload and budget. In contrast to existing systems, Mo-
saic generates a performance/budget curve that is Pareto-
optimal, along which the user can choose. Our approach
uses device models and linear optimization to find a data
placement solution that maximizes I/O throughput for the
workload. Our evaluation shows that Mosaic provides a
higher throughput at the same budget or a similar through-
put at a lower budget than the state-of-the-art approaches
of big data query engines and RDBMS.

PVLDB Reference Format:
Lukas Vogel, Alexander van Renen, Satoshi Imamura, Viktor
Leis, Thomas Neumann, and Alfons Kemper. Mosaic: A Budget-
Conscious Storage Engine for Relational Database Systems.
PVLDB, 13(11): 2662-2675, 2020.
DOI: https://doi.org/10.14778/3407790.3407852

1. INTRODUCTION
For analytical queries on large data sets, I/O is often the

bottleneck of query execution. The simplest solution is to
store the data set on fast storage devices, such as PCIe SSDs.
While it is prohibitively expensive to store all data on such

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3407790.3407852

Figure 1: Estimated performance spectrum of Mo-
saic compared to big data query engines like Spark
and manual data placement.

devices, systems can leverage the inherent hot/cold cluster-
ing of data. Workloads often have a small working set, and
storing the cold data on fast, but expensive devices wastes
money. It would be better for a storage engine to store it on
a cheap HDD instead, as no performance penalty is incurred.

Traditional relational database systems (RDBMS) are un-
suitable for this task. Most are optimized for a specific class
of storage devices and assume that all data will be stored
on a device of the given class. Traditional RDBMS, such
as PostgreSQL or MySQL, are optimized for HDD and only
maintain a small DRAM cache. Modern systems like Hy-
Per [23], SAP HANA [10], or Microsoft Hekaton [8] are built
for DRAM. Our database system, Umbra [28], is optimized
for SSD. Some allow system administrators the freedom to
choose where to place data, even if they are not designed
for multiple types of storage devices, for instance, via ta-
blespaces. Here, the administrator can choose the stor-
age location (and thus the storage device) for each table.
However, moving an entire table either wastes fast storage
space or negatively impacts on performance, as a table’s cold
columns are always moved together with its hot columns.
Therefore, enabling column-granular placement allows for a
much more cost-efficient storage allocation.

This problem is well-known in the big data world. Big
data query engines like Spark [41] are therefore optimized
for column-major storage formats like Parquet [18]. These
file formats support the splitting of tables and their columns

2662

into multiple files, so that they can be distributed between
multiple nodes. Heterogeneous, tiered storage frameworks,
such as OctopusFS [21], hatS [30], or CAST [5], distribute
these chunks over multiple devices. They are very good
at eking out every ounce of performance from the storage
devices. Their downside is that they cannot judge if the
provisioned storage devices are a good fit for the workload,
as they are installed after the system has already been pur-
chased and provisioned. Big data query engines using such
storage frameworks are often distributed systems optimized
for cluster operation. While this enables scaling to very
large data sets, it incurs significant CPU and networking
overheads. Queries are therefore more frequently CPU- or
network-bound than is the case with traditional RDBMS.

It would thus be beneficial to have column-granular table
placement on RDBMS. While table-granular placement is
not optimal for the reasons mentioned above, a user can at
least manually determine a sensible placement on the basis
of their experience. For column-granular placement, how-
ever, it is considerably harder to find a good solution by
manual means, as the number of possible placements grows
exponentially in the number of columns and storage devices.

Big data engines and RDBMS with heterogeneous storage
frameworks have another shortcoming. A modern server can
have storage devices of multiple classes: DRAM, Persistent
Memory, NVMe SSDs, SATA SSDs, and HDDs in differ-
ent RAID configurations, and all are competitive at their
price point. A system administrator buying a new database
server cannot determine the optimum configuration that will
achieve the required throughput at the lowest cost.

We therefore propose Mosaic, a storage engine for RDBMS
that is optimized for scan-heavy workloads and covers the
entire deployment process of a database system: (1) hard-
ware selection, (2) data placement on purchased hardware,
and (3) adaption to changing workloads. Mosaic uses pur-
chased storage devices to their full potential with column-
granular placement, ensuring an optimum throughput/per-
formance ratio at all budgets. So as not to restrict the user
in the purchase process, Mosaic does not categorize storage
devices into tiers but organizes all devices in a tierless pool.
A conventional storage engine, in contrast, has distinct tiers
(e.g. HDD, SSD, and DRAM). Mosaic’s tierless design al-
lows the user to mix device classes (e.g. adding an NVMe
SSD to a system already equipped with a SATA SSD, where
a tiered approach would only have an SSD tier).

Figure 1 compares Mosaic to existing approaches. The
x-axis shows the cost of the installed storage devices, the y-
axis the throughput of the system. Big data engines do not
scale well with the price of the storage devices used as they
are rarely I/O-bound, even for smaller workloads. RDBMS
scale well but offer no automated mechanism for data place-
ment and are restrained to table-granular placement. Man-
ual data placement does not guarantee that the choice is
Pareto-optimal or fits the data set. Mosaic’s automatic
column-granularity placement not only increases throughput
for scan-heavy workloads at all price points, but it also em-
powers the user to find the best configuration within a given
budget or subject to specific performance requirements.

Mosaic is an improvement over existing solutions during
all stages of the deployment process: (1) Before hardware
is purchased: given a typical set of queries and a list of de-
vices available for purchase, Mosaic gives purchase recom-
mendations for arbitrary budgets. Each recommendation is

guaranteed to be Pareto-optimal, i.e., no other device con-
figuration is faster while also being cheaper. (2) After pur-
chase: given the trace of a typical set of queries and a set of
storage devices, Mosaic places data optimally to maximize
throughput. Mosaic can work with any set of storage de-
vices, not only those that have been bought on the basis of
its recommendations. (3) During operation: Mosaic acts as
a pluggable storage engine for an RDBMS.

In summary, our key contributions are:
1. We present Mosaic, a column-based storage engine for

RDBMS, optimized for scan-heavy OLAP workloads
and using a device pool without fixed tiers. In con-
trast to existing approaches, it places data with col-
umn granularity.

2. We design a placement algorithm based on linear op-
timization that finds optimum data placement for a
workload.

3. We design a prediction component for Mosaic that
gives purchasing recommendations along a Pareto-
optimal price/performance curve.

4. We integrate Mosaic into our DBMS, Umbra [28], and
point out its benefits over state-of-the-art approaches.

2. BACKGROUND AND RELATED WORK
While, to the best of our knowledge, Mosaic has no direct

competitor, all of its design goals have been achieved in other
systems individually, but never together. These systems are
therefore not able to leverage the synergies of implementing
all of Mosaic’s design goals.

2.1 Heterogeneous Storage Frameworks for
Big Data Query Engines

Data set sizes have over time outgrown the storage capac-
ity of single systems, which is why big data engines were
introduced. Most query engines, such as MapReduce [6] or
Spark [41], support the Hadoop file system (HDFS) [33].
This splits files into blocks, which it replicates across nodes.
Until recently, nodes were unaware of the characteristics of
their storage device and therefore could not place data in a
workload-aware fashion.

Multiple extensions to HDFS have been developed to rec-
tify this issue. Kakoulli et al. implement OctopusFS [21], a
tiered distributed file system based on HDFS. OctopusFS
uses a model to infer a data placement for a fixed set of tiers
(DRAM, SSD, and HDD) that maximizes throughput. The
authors later built on OctopusFS and developed an auto-
mated tiered storage manager [14] that uses machine learn-
ing to decide on which blocks to up- or downgrade.

CAST [5] recognizes that cost models and tiering mecha-
nisms used for operating systems do not solve problems of
OLAP style workloads, as they rely on access characteristics
that are atypical for an OS, i.e., large, sequential table scans.
Multiple other works have introduced a heterogeneity-aware
layer on top of HDFS using fixed tiers [17, 30, 31, 32].
Snowflake does not rely on HDFS but uses its own tiered dis-
tributed storage system, optimized for cloud operation [37].

What all solutions building on HDFS have in common is
that they focus on opaque HDFS blocks as atomic units
of storage. As they do not know what is stored inside
those blocks, they cannot make domain-specific optimiza-
tions. Mosaic knows its domain (retrieving columns for table
scans in an OLAP context), and its placement strategies can
take this into account. Mosaic deliberately decides against

2663

a tiered architecture common in HDFS approaches, as new
hardware does not always cleanly map onto existing tiers.

The approaches referred to in this section do not offer
any purchase recommendations. In contrast to Mosaic, they
have to manage replication and data locality, as they run on
clusters. While replication is orthogonal to Mosaic (i.e. one
could extend Mosaic to replicate data), we focus on a single
machine for now, to simplify the data model.

2.2 Heterogeneous Storage in RDBMS
RDBMS hide the throughput gap between DRAM and

background storage with a buffer pool. In the last decade,
when SSDs became affordable, a lot of work was done to
exploit their improved throughput and random access char-
acteristics. For example, Umbra, our database system, is
optimized for SSDs [28]. It provides main memory-like speed
when the working set fits into the DRAM buffer pool and
gracefully degrades to SSD-speed with larger working sets,
an idea first implemented in LeanStore [25].

Novel algorithms have been proposed for caching data
from SSD into DRAM [19, 20, 35] or using SSDs as a cache
for HDDs [15]. MaSM [3], for example, uses an SSD cache
for out-of-place updates. DeBrabant et al. [7] introduce
anti-caching, where DRAM is the primary storage device,
and cold data is evicted to HDD. Stoica and Ailamaki [34]
reorganize cold data so that the OS can efficiently page it
out. Another approach is to build buffer pools with multiple
tiers [9, 22]. Here, SSD is a caching layer for slower devices
like HDDs. These approaches, however, waste valuable stor-
age space on SSDs, as data is replicated across multiple tiers.
While caching is necessary for volatile devices like DRAM,
it is not needed for persistent storage.

Hybrid storage managers circumvent this issue by placing
the data on different device classes without caching [4, 26,
27, 42]. hStorage-DB [27], like Mosaic, uses information
from the query engine to place data on HDDs and SSDs.

These approaches focus on HDD and SSD. With new
storage technologies, such as persistent memory, the whole
cycle of research begins anew as RDBMS now have to inte-
grate a new layer of storage [2, 36]. Mosaic finally breaks
this cycle by being device-agnostic. Every device is instead
parameterized by the user and added to a tierless pool. The
user can add or remove new device classes without having
to re-engineer Mosaic.

General-purpose data placement systems [16, 29, 39] are
not restricted to relational data and therefore, unlike Mo-
saic, cannot exploit domain knowledge.

2.3 Prediction and Storage Recommendation
Mosaic’s prediction component also builds on prior work.

Wang et al. built a MapReduce simulator [38] to investi-
gate the impacts of different design decisions, such as data
placement or device parameters, on performance. In con-
trast to Mosaic, their tool only plans new setups and does
not act as a storage engine. Herodotou et al. designed a
‘what if’ [13] engine capable of comparing different config-
urations and giving recommendations for MapReduce jobs.
Cheng et al. went a step further and designed CAST [5],
a tiered storage framework for MapReduce jobs. It gives
data placement recommendations for a cloud context that
minimize cost while maintaining performance guarantees.
However, they also limit themselves to a predefined set of
device classes.

Mosaic

DBMSselect a, b
from R

Metadata Data Retriever

Data Placer

Traces

Table Defs

Buffer

Device Configs

Device Models

scan(R, [a,b])

Device 1 Device 2 Device n
...

char* buffer

Strategy

Recommender

Figure 2: The components of Mosaic and its inter-
face with the RDBMS.

Guerra et al. developed a general-purpose framework for
dynamic tiering [11]. Like Mosaic, it has an advisor that
gives purchase recommendations and a runtime component
that retrieves data. In contrast to Mosaic, however, it oper-
ates on opaque data chunks instead of tables. While this ap-
proach is more generalized, it has the downside that it can-
not make domain-specific optimizations, as explained above.

Wu et al. developed a general-purpose hybrid storage sys-
tem with an approach similar to that of Mosaic [40]. It
forgoes tiering and places data so that the bandwidth of
all devices is fully utilized. Unlike Mosaic, however, it only
supports a mixture of identical HDDs and SSDs (i.e. not
multiple HDDs or SSDs at different speeds).

3. MOSAIC SYSTEM DESIGN
Mosaic comprises four components, as shown in Figure 2.

Mosaic collects metadata from users before they purchase
devices and while running as a storage engine. Information
about attached devices, their measured performance, and
recorded traces is kept in a metadata store (Section 3.1).
Mosaic stores its managed data in a storage format that is
optimized for the access characteristics of its devices (Sec-
tion 3.2). The data retriever is an interface between the
storage layer and the DBMS (Section 3.3). The data place-
ment component distributes data between attached storage
devices so that the data retriever can maximize the average
throughput for a workload (Section 3.4). It is also responsi-
ble for predictions and purchase recommendations.

The components are interdependent: An inappropriate
storage format (e.g. one that uses an excessively slow com-
pression algorithm for a storage device with high through-
put) reduces overall throughput, even if the data placer finds
an optimal placement. The same goes for the data retriever:
If data placement is not optimal or Mosaic chooses the wrong
compression type for the data, performance will suffer, even
if it can exploit the throughput of a storage device.

3.1 Metadata
Figure 3 summarizes the metadata gathered by Mosaic.

The only information supplied by the user is a list of con-
nected devices (3a). This contains each device’s capacity,

2664

[[device]]
id = 0
mnt = "/mnt/nvme"
name = "NVMe SSD"
capacity = 60 GB
threads = 8
compression = "ZSTD"
cost_per_gb = 60 ct

(a) Device configuration entry

[[trace]]
A:x,y
B:z
A:x
C:u,v
A:y
C:v,w
...

(b) Excerpt of a trace

A: x -> int ,
y -> varchar (200)

B: z -> int
C: u -> int64 ,

v -> varchar (10),
w -> int

(c) Table definitions

[[model]]
device_id = 0
none = 2.1 GB/s
LZ4 = 1.6 GB/s
zstd = 1.2 GB/s
seek = 0

(d) Device model

Figure 3: Metadata recorded, maintained, and
stored by Mosaic.

the optimum number of concurrent reader threads, cost1,
and the preferred compression algorithm. Since Mosaic does
not depend on fixed device tiering, the user can add and re-
move devices to the pool during runtime by editing the de-
vice configuration file. Mosaic records table scans of queries
being run since the last time the user triggered data place-
ment in a trace file (3b). If the user has not yet purchased
any storage devices, but wishes to receive a purchase rec-
ommendation, Mosaic can generate a trace file without a
data set being present. Mosaic then extracts the table scans
from each query and inserts them into the trace file. The
trace file allows Mosaic to match the accessed data chunks to
columns, and the columns to table scans, and shows which
columns the DBMS has frequently accessed together. The
data placer uses the trace file to infer the optimum data
placement for the recorded workload. This is an advantage
over established big data file systems. HDFS, for example,
only keeps access statistics per file, with no insight into what
a file consists of. Mosaic can derive data interdependencies
from the trace file (i.e. it can determine which columns are
often queried together).

Mosaic furthermore extracts table definitions from the
data set (3c). It also periodically measures the through-
put of all attached devices for the current workload and
stores it in a device model file (3d). The predictor uses this
file to predict how the data retriever would perform with
hypothetical data placements.

3.2 Storage Format
We adapted Apache’s established Parquet file format to

form the Mosaic data storage format. It is a columnar data
storage format, and it has many properties beneficial to Mo-
saic. (1) Parquet stores data in a column-major format with
columns further subdivided into chunks comprising pages.
Mosaic extricates column chunks out of existing Parquet files
and distributes them between storage devices. (2) Parquet

1We use e-cents (ct) as the unit of currency as e is the
currency in which we bought our evaluation system. If the
absolute cost is unknown or subject to change, it is possible
to define the cost relative to the cheapest device. For exam-
ple, if an SSD costs three times as much as an HDD, enter
3 and 1 respectively.

can compress pages individually with a variety of compres-
sion algorithms. Mosaic can thus compress column chunks
depending on their storage device and recompress them with
a different algorithm during migration. (3) Parquet’s inter-
nal data format has built-in support for partitioning a re-
lation on multiple files. We extend this so that Mosaic can
place any column on any storage device. (4) Parquet stores
one metadata block per column chunk and separates data
and metadata. Mosaic can thus easily move them indepen-
dently of each other. Instead of storing the column chunk
metadata with the data itself, we reserve some storage space
on a metadata device chosen by the user. This ensures that
reading metadata does not affect concurrent reads on de-
vices not suited to random reads (i.e. HDDs).

Mosaic allows the user to choose a compression algorithm
for each device. Compressing the stored data has multiple
advantages: (1) Mosaic can store more data while staying
within budget, as compressed data takes up less space. (2)
When the decompression throughput of the CPU is higher
than a device’s throughput, data compression increases the
effective throughput. (3) When data on faster devices is
compressed, Mosaic can move a greater percentage of the
working set to those devices, thus increasing overall through-
put. Column-major storage and compression make random
accesses and updates more difficult. This, however, is no is-
sue for Mosaic, as it focuses on scan-heavy workloads.

3.3 Data Retrieval
Mosaic’s data retriever component retrieves stored data

and converts it into a format that the RDBMS is able to
read. The smallest unit of storage it can retrieve on request
is a column chunk, which, by default, comprises 5 million
values. At a higher level, the RDBMS can also request entire
table scans. When the RDBMS triggers a table scan, Mosaic
asynchronously fetches chunks of the requested columns in
ascending order, until the buffer is full.

Mosaic can keep this buffer small: It assumes that queries
are I/O-bound, and the RDBMS is thus limited by the speed
at wich Mosaic fills the buffer. The buffer only holds the set
of chunks that the RDBMS is actively processing and the
set of chunks being concurrently prefetched. The size of
the buffer thus depends on the number of columns being
scanned and their data type. In our experiments, it never
exceeded 1 GiB. Whenever the data retriever has buffered
a set of chunks, it notifies the RDBMS of the new data via
a callback. As soon as the RDBMS has processed a chunk,
Mosaic evicts it from the buffer. Prefetching is straightfor-
ward, as Mosaic only needs to support linear table scans.

As the data placer can store columns of a table scan on
different devices, Mosaic must read from multiple devices
in parallel. Devices such as NVMe SSDs only reach their
maximum throughput when multiple threads read concur-
rently. Mosaic’s data retriever maintains a thread pool with
reader threads. It assigns each requested column chunk to a
reader thread. As most table scans access multiple columns,
the data retriever reads the chunks of all requested columns
in parallel. This is important, as the slowest reader deter-
mines overall throughput. The placement strategy must en-
sure that the chunks are placed in a way that maximizes the
data retriever’s throughput. The placer thus has to make
sure that a column on a slow device does not stall a table
scan whose other columns are on fast devices. Each reader
forces the OS to sequentially populate its page cache with

2665

the relevant data. Without this step, random access by the
RDBMS or the decompressor could reduce the throughput.

While SSDs need concurrent access to maximize through-
put, HDDs have a large drop in throughput if accessed con-
currently, as sequential access will degenerate into random
access when multiple threads contend for the device. Mosaic
thus lets the user set a per-device thread limit. A semaphore
guards each device to ensure that the number of threads
reading from a device in parallel never exceeds the optimum.

Before returning to the reader thread pool, reader threads
add the chunk’s data, which the OS page cache now buffers,
to a queue. This queue is ordered by the chunk request
time. Mosaic now decompresses the queued chunks. Since
the throughput of a storage device could be higher than
that of a single thread that is decompressing data, Mosaic
maintains a decompression thread pool. Whenever a decom-
pression thread is idle, it fetches the first chunk in the queue,
decompresses it, and makes the resulting values available to
the RDBMS via its callback.

3.4 Data Placement
Mosaic places data offline and only reorders data when

prompted to do so by the user. Mosaic starts a new trace
file after each placement or on manual prompt by the user.
It stores information about the columns accessed by the
RDBMS in the trace file of that epoch. It enters a record for
each table scan of every query executed. Each record stores
the table, and the columns requested by the table scan.

As explained in Section 1, Mosaic’s placement module has
two modes. Before devices are purchased, Mosaic is in bud-
get mode. When they are installed, Mosaic switches to ca-
pacity mode. In budget mode, Mosaic calculates a recom-
mended placement on the basis of a given budget. In ca-
pacity mode, it distributes the data between the connected
devices up to their capacity as specified in the device config-
uration metadata. When in budget mode, Mosaic considers
all devices of the device configuration metadata as targets
regardless of whether they are present. This mode does
not restrict the device’s capacities, but it does restrict their
cost. Here, Mosaic’s recommender provides the user with
the recommended hypothetical placement along with a set
of devices and their capacity for installation. Mosaic ensures
that the total device cost does not exceed the user-defined
maximum budget. In both modes, Mosaic uses swappable
placement strategies to calculate a data placement. The
next section summarizes the strategies employed.

4. DATA PLACEMENT STRATEGIES
For performance predictions, Mosaic not only needs to

place data optimally, i.e., to find the best placement solu-
tion qualitatively, it also has to predict performance quanti-
tatively. Mosaic consequently needs a model that can predict
how data placement impacts query runtime (Section 4.1).

Mosaic supports pluggable data placement strategies (Sec-
tion 4.2). The following three sections present three different
placement strategies. The first two of these (Section 4.3 and
Section 4.4) are used by multiple state-of-the-art systems.
They were designed for a tiered storage engine, i.e., they as-
sume that ‘slow’ and ‘fast’ layers exist, between which they
can move the data. However, as Mosaic is a tierless engine,
they are not a good fit. We therefore use them as a base-
line against which we compare our contribution, which is the
third strategy, called LOPT, and is explained in Section 4.5.

4.1 A Model for Predicting Table Scan Time
Since Mosaic not only offers data placement for installed

devices but also predicts performance for hypothetical con-
figurations, it needs a model on which to base its predictions.
To keep complexity down, we make three assumptions:

Columns are atomic. We assume a column is stored
contiguously on a single device. Mosaic can split columns at
the parquet column chunk level and distribute the chunks
on multiple devices. The prediction component, however,
considers columns to be atomic. This speeds up placement
calculation, as only whole columns have to be placed, which
reduces the complexity of the model. It also has the added
benefit that placement calculation is independent of data
set size, as the number of columns and therefore possible
placement permutations is constant in the number of tu-
ples. Distributing chunks on multiple devices only benefits
runtime performance if some chunks of a column are read
disproportionally frequently and therefore profit from being
on faster devices. This is only the case if data is either
sorted (which is only possible for one column per table) or
the query is so selective that chunks can be skipped. This
is unrealistic with large chunk sizes. While possible with
smaller chunk sizes, Mosaic cannot shrink chunks too far as
the placement calculation would become too expensive.

Queries are I/O dominated. To keep the model ag-
nostic of the query execution engine, we ignore computa-
tion times, such as aggregation, joins, or predicate eval-
uation and we only model table scans. Each query com-
prises one or more table scans, each of which reads one or
more columns. Columns on different devices can — and
should — be scanned in parallel. While this assumption
might reduce absolute prediction accuracy for CPU-bound
workloads, predictions will still be correct in relation to each
other, as the computation overhead is constant. The over-
head only depends on the contents and size of its tables,
not on data placement and only adds a constant error to
all predictions, assuming the computation overhead is not
shadowed by I/O.

The throughput of a device is independent of the
number of columns being read in parallel. We as-
sume that Mosaic can saturate a device’s I/O bandwidth
regardless of how many columns it reads in parallel. This is
true for SSDs, which benefit from multi-threaded reads. It
is wrong for HDDs, whose throughput decreases when read-
ing columns in parallel, because of their seek time. Since
we solve this problem on the architecture side by reading
columns a chunk at a time and using per-device semaphores
(see Section 3.3) that ensure that only one thread at a time
can read from a HDD, we need not model it.

The model we built is based on these assumptions. It
predicts the total execution time ttotal of a set of table scans
TS given a set of devices D and a set of columns C.

For each column c ∈ C, the function size returns its size:

size : C → N : size of column

For uncompressed data, size is the product of the number
of tuples in the column and the size of the column’s data
type. For compressed data, Mosaic looks up its size in the
metadata of each column chunk.

Each table scan T ∈ TS is a subset of C, and each device
d ∈ D is modeled as a 5-tuple

d = 〈tseek, cr, t, capacity, cost〉 (1)

2666

HDD

SSD

t 1 2 3 4 5 6 7 8 9 10 11 12

Q1 Q2 Q3 Q4

13

Q5

HDD

SSD

t

Q3

1 2 3 4 5 6 7 8 9

Q1 Q2 Q4 Q5
Devices

1. Gather Input Data

Trace

Q1: ,

,Q2:

Q3: ,
Q4: ,
Q5:

/∆tThroughput:

Size:SSD

C:

D:

S

Relations

A:

B:

R

/∆tThroughput:

Size:HDD

Data placement Query execution

2b. LOPT Placement

HDD

SSD

2a. HOT Placement

HDD

SSD

Figure 4: Modus operandi of Mosaic, and two exemplary placement strategies. The HOT algorithm indis-
criminately moves the most frequently accessed columns to the SSD. The LOPT algorithm finds the data
placement with the least storage device idle time and thus speeds up sequential execution of the 4 sample
queries by 30%. For demonstration purposes, we assume that the SSD has twice the throughput of the HDD.

with the following values:

tseek : seek time

cr : compression ratio

t : throughput

capacity : capacity

cost : cost per unit of storage

These values are stored in the user-provided device con-
figuration entry (see Section 3.1), with the exception of t,
the continuously measured throughput stored in the device
model metadata.

Equation (2) expresses the time td,c required to scan a
column c ∈ C stored on a device d ∈ D:

td,c = tseek +
size(c)

cr(d) · t(d)
(2)

The fraction size(c)
cr(d)

is an estimation of the compressed

size of c on d. If the column has already been stored on
d or another device with the same compression algorithm,
Mosaic looks up the actual size instead of estimating it.

When the placer stores two or more columns relevant to a
table scan on different devices, the retriever can read them
in parallel. The runtime of each table scan T ∈ TS, tT is
thus only determined by the device taking the longest, as
seen in Equation (3).

tT = max{
∑
c∈T

Id,c · td,c | d ∈ D} (3)

I is an indicator function:

Id,c =

{
1 if column c is stored on device d

0 otherwise

The total time required to run the set of table scans TS
is the sum of the runtime of each table scan:

ttotal =
∑

T∈TS

tT (4)

The model allows the approximate cost of a real or hypo-
thetical data placement to be calculated:

costtotal =
∑
c∈C

∑
d∈D

Id,c · cost(d) · size(c)
cr(d)

(5)

Mosaic’s data placer, given I, moves all columns to the
device specified by I.

I is an abstraction over specific placement strategies and
their implementations. A strategy can either determine I
algorithmically (Sections 4.3 and 4.4) or with a constraint
solver (Section 4.5). Mosaic’s prediction and placement com-
ponent is therefore independent of the placement algorithm.

4.2 Responsibilities of a Strategy
As seen in Figure 4, the data placer supplies each strategy

with a number of inputs. These are (1) the size of each rela-
tion’s columns, (2) the throughput, size, price per gigabyte,
and optimal number of parallel readers for each attached
device, and (3) a trace with the table scans since the start
of the current epoch.

A strategy places columns on storage devices in such a
way that the average throughput of a workload similar to
the trace is maximized. Figure 4 shows two such strategies.
Strategy (a), called HOT, places the columns read the most
often (i.e., the ‘hottest’ columns) on faster devices. Strategy
(b), called LOPT, finds the optimum placement using linear
optimization. As can be seen on the right-hand side, the
choice of strategy impacts the overall throughput. The HOT
strategy cannot exploit the fact that Mosaic reads data from
multiple devices in parallel. The LOPT strategy, in contrast,
uses both devices, concurrently decreasing the overall table
scan time in the example by ≈ 30%.

4.3 HOT Strategy at Table Granularity
The table granular HOT strategy (HOT table) treats each

table as an atomic entity that can only ever live on one sin-
gle device at a time. The strategy places tables according
to their ‘hotness’. It assumes that a table that the RDBMS
scans often (being ‘hot’) benefits from being on a fast device.
Improving a table scan that runs more often has an overall

2667

higher positive impact on average throughput. It places ta-
bles descending in order of their number of accesses on the
fastest device with enough space for the whole table.

This strategy is an approximation of the toolset avail-
able to administrators of many established RDBMS such as
PostgreSQL or Oracle. These systems allow database ad-
ministrators to create different tablespaces on different de-
vices and assign each table to a specific tablespace. While
these systems do not allow automatic data placement like
Mosaic does, we assume that a system administrator using
tablespaces will decide in the same way as the HOT strat-
egy: they will move tables appearing disproportionally often
in observed queries to faster devices.

4.4 HOT Strategy at Column Granularity
The column-granular HOT strategy (HOT column) is an

improvement over the table granular version. As before,
data accessed more frequently is considered ‘hot’ and so is
placed on devices with higher throughput. But this time, ta-
bles are no longer treated as atomic. Instead, HOT column
migrates single columns of tables. This is a huge improve-
ment over HOT table, as even the hottest tables often have
multiple columns that are only rarely queried. HOT column
will rightfully prioritize warmer columns of cold tables over
cold columns of hot tables.

While the HOT approach has been proven to be work-
able by many existing tiered storage engines, it has multiple
weaknesses. For instance, (1) HOT relies on a tiered ar-
chitecture in which data is moved up or down one tier at a
time. With HOT, Mosaic can emulate such a hierarchy with
two or three devices that have large performance gaps (say,
an HDD and an SSD). If we, however, add multiple devices
whose throughputs are close (i.e. multiple HDDs, or a SATA
SSD and a RAID 5 of multiple HDDs) the HOT strategy can
no longer cleanly bin those devices into distinct tiers. (2)
As can be seen in Figure 4, HOT does not place data such
that a table scan can be parallelized. If the RDBMS often
scans two hot columns together, they would benefit from
being on different devices so that Mosaic could read from
both devices in parallel. HOT would try to place both on
the fastest device available, leaving optimization potential
on the table. (3) Mosaic can only apply the HOT place-
ment strategy if it knows the device capacities beforehand.
If Mosaic is in budget mode, it is not obvious how to choose
device sizes to maximize throughput.

4.5 Linear Optimization Strategy
Rather than using a heuristic to place data, the linear op-

timization strategy (LOPT) uses the model defined in Sec-
tion 4.1 to find an optimal solution. LOPT deems a solution
optimal if it minimizes the time spent scanning tables for a
set of queries. It uses a constraint solver to define the indi-
cator function I in such a way that ttotal of Equation (4) is
minimized.

LOPT subjects Equation (4) to the following constraints
for each column:

∀c ∈ C :
∑
d∈D

Id,c = 1 (6a)

∀c ∈ C : ∀d ∈ D : Id,c ∈ {0, 1} (6b)

A column has to be stored exactly once (6a) and is com-
pletely stored on a device or not at all (6b). LOPT enforces
one of two additional constraints, depending on the mode.

TPC-DS TPC-H

1000 1500 2000 2500 1000 1500 2000 2500

0

25

50

75

100

Total cost of storage [ct]

%
st

or
ed

o
n

g
iv

en
d

ev
ic

e

NVMe SSD SATA SSD RAID 5 HDD

Figure 5: LOPT data placement in budget mode for
TPC-H and TPC-DS (SF 100) at different budgets.
The vertical lines indicate from when an increased
budget does not increase performance.

In capacity mode, the strategy infers optimal placement
for previously purchased hardware. A valid placement must
therefore not exceed the storage capacity of any installed
device. Mosaic thus subjects Equation (4) to the following
additional constraint for each device:

∀d ∈ D :

(∑
c∈C

Id,c ·
size(c)

cr(d)

)
≤ capacity(d) (7)

In budget mode, the strategy predicts the optimum place-
ment for a budget costmax. Since no hardware has been
bought yet, Mosaic can ignore all the capacity limitations
but has to stay below budget. Mosaic subjects Equation (4)
to the following additional constraint:

(∑
d∈D

∑
c∈C

Id,c · cost(d) · size(c)
cr(d)

)
≤ costmax (8)

Mosaic uses Gurobi [12] to solve this optimization prob-
lem. Gurobi is a constraint solver with support for mixed-
integer programming (MIP).

LOPT strategies’ advantage over HOT variants is that it
exploits all the information encoded into the model. (1)
As Figure 4 shows, HOT ‘leaves bandwidth on the table’.
It underutilizes slower devices, which — while having less
throughput than their faster counterparts — could still con-
tribute to overall throughput. This is because HOT tries to
concentrate hot data on a few, fast devices. LOPT is free
to place hot data on slower devices if a larger column is the
bottleneck of the table scan. (2) LOPT is aware that it is op-
timizing table scan performance and makes domain-specific
optimizations through its modeling. It does not waste pre-
cious space on faster storage devices for columns that are
hot but are often queried together with colder columns. (3)
The user can easily extend LOPT. A user might, for exam-
ple, want to model a limited amount of expansion slots, a
maximum/minimum size of each storage device, or a power
budget constraint. With LOPT, they can just add new di-
mensions to the device model and add additional constraints
for those dimensions to the solver. The solver will then find
the best solution given the additional constraints. No fur-
ther changes to Mosaic are needed.

Figure 5 shows the advantages of LOPT and its budget
mode for an exemplary storage configuration. It comprises
a fast NVMe SSD, a slower SATA SSD, an even slower HDD,

2668

Table 1: Storage devices of the evaluation system.

Device Price per GB Throughput

NVMe PCIe SSD 125 ct 2.10 GB/s
SATA SSD 60 ct 0.41 GB/s
RAID 5 of HDDs 45 ct 0.32 GB/s
HDD 30 ct 0.23 GB/s

and a RAID 5 of three HDDs. At lower budgets, LOPT in
budget mode does not spend all the available money on a
fast NVMe drive. It instead distributes data between the
four devices, maximizing overall throughput. Only with an
increasing budget does LOPT gradually place data on the
fast NVMe SSD. Even at high budgets, it still keeps parts
of the data on SATA SSD. To save costs, it keeps never-
touched data (25% for TPC-DS, 50% for TPC-H) on HDD.
LOPT can thus determine when adding additional hardware
is just a waste of money. In the figure, this threshold is
marked by a vertical line.

While LOPT is more sophisticated than HOT, it is also
much harder to compute. Constraint (6b) that permits only
integers is particularly constricting, as it forces us to employ
MIP, which is NP-hard. But it is important to note that run
time only depends on the device count and the number of
distinct table scans. It is independent of the number of tu-
ples (as we treat columns as atomic units) and queries. If
multiple queries ‘re-use’ the same table scans or the user
runs a query multiple times, the model does not become
more complex. LOPT just multiplies its modeled runtime
for that query by the number of reuses, and the optimizer
does not need to consider more variables. Section 5.5 eval-
uates placement computation cost in detail.

5. EVALUATION
Table 1 shows the storage configuration of the evaluation

system. The system comprises four different storage device
classes, each competitive at its respective price point. Be-
sides two SSDs of different speeds, we equip the server with
four enterprise grade server HDDs at 10k RPM. We con-
figure three HDDs as a RAID 5 and keep the fourth as a
standalone disk. The server is equipped with 192 GB of
DRAM and a single socket Intel Xeon Gold 6212U CPU
with 24 physical cores @ 2.4 GHz (with SMT: 48 cores).

As explained in Section 3, choosing a fitting compres-
sion algorithm for each storage device increases throughput.
While using no compression incurs no added CPU overhead,
it requires the most space. LZ4 has a low CPU overhead
with an acceptable compression ratio. Zstandard (ZSTD)
has the highest compression ratio with a still acceptable
CPU overhead. As expected, the synthetic TPC-H SF30
data set compresses quite well, requiring 44.11 GB uncom-
pressed, 16.51 GB if compressed with LZ4, and only 10.03
GB with ZSTD. ZSTD still yields a compression ratio of
about 3 on real-world data sets (2 for LZ4) [1]. Table 2
shows the relative speedup of the TPC-H benchmark over
the baseline for different compression algorithms. ZSTD
compressed data takes up less space and increases overall
performance compared to the cheaper LZ4 algorithm, even
on PCIe SSD. For this setup, we therefore configure Mosaic
to always compress data with ZSTD.

We run all benchmarks with Umbra as the database en-
gine and Mosaic as its storage engine. We choose Umbra

Table 2: TPC-H benchmark speedup (SF 30) of SSD
and HDD for different compression algorithms.

Speedup over HDD

Device None LZ4 ZSTD

HDD 1 — 2.92
NVMe PCIe SSD 6.2 11.18 12.66

as it provides best-of-class speed and thus rules out CPU
bottlenecks, unlike big data query engines. While RDBMS
like MySQL also expose an interface for storage engines,
they cannot easily be adapted to columnar data storage. A
more detailed reasoning as to why we evaluate Mosaic only
in conjunction with Umbra can be found in Section 5.9.

5.1 Benchmarks
For our evaluation, we use two OLAP benchmarks: TPC-

H and TPC-DS. TPC-H comprises 22 queries and 8 tables.
The largest table, lineitem, accounts for 70% of the data set
size, while the smallest 5 tables together only make up 3%.
Choosing the best placement for the columns of the lineitem
table thus gives Mosaic a large optimization potential. TPC-
DS is a much more complex OLAP benchmark. It comprises
99 queries and 24 tables. Since Umbra does not yet support
all features required by TCP-DS, such as window functions,
we discard unsupported queries. We thus run a subset of
TPC-DS comprising 67 queries. We run both benchmarks
at scale factor 30 and 100.

For both benchmarks, we define one run as a measurement
of the runtime of each query executed once sequentially, with
the execution times then added. To accurately measure a
query’s runtime, we execute it five times and take the mean.
Before each query, we clear the OS cache to force Mosaic to
read all data from the underlying storage devices. Running
all queries sequentially just once is not a realistic benchmark.
In reality, a workload is usually heavily skewed towards just
a few queries. It is, however, the worst case for Mosaic and
thus a good benchmark. The more distinct queries we run,
the harder it is for Mosaic to find an optimal placement.
The working set is also larger. Mosaic thus benefits less
from expensive storage on faster devices.

5.2 Mosaic vs. Traditional RDBMS
In this section, we evaluate how Mosaic compares against

the toolkit of a traditional relational database system. We
compare Mosaic’s column-granular LOPT placement strat-
egy against table-granular placement. Table-granular place-
ment is the status quo and the best option in an RDBMS
such as Oracle or PostgreSQL.

We first import a trace of the TPC-H benchmark (exe-
cuting queries 1 to 22 once in sequence). We then trigger
Mosaic’s LOPT placement strategy for different budgets.
After data placement, we repeat the benchmark and record
the runtime. As a baseline, we benchmark all table place-
ment permutations for the four largest TPC-H tables that
make up 98% of the total data set size. The remaining four
smallest tables are always stored on NVMe SSD.

Figure 6 shows all unique table-granular placement con-
figurations () for HDD, SATA SSD, and NVMe SSD. Each
configuration could have been chosen by a system adminis-
trator of a traditional RDBMS with tablespaces. We mark
the three configurations in which Mosaic stores all five tables

2669

all tables on NVMe SSD

all tables on SATA SSDall tables on HDD

0.60×cost 0
.4

1
×

ti
m

e

20

40

60

80

100

120

400 600 800 1000 1200310 350 536 1300

Total cost of storage [ct]

B
en

ch
m

ar
k

ru
n

ti
m

e
[s

]

Granularity

Figure 6: Benchmark runtime for TPC-H (SF 30) with column-granular placement using the LOPT strategy
compared to all placement permutations of the four largest tables at table granularity. The dashed line indi-
cates the Pareto optimum for table placement. The dotted arrows show that Mosaic using LOPT placement
offers the same performance at a lower budget or faster runtime at the same budget.

on the same device. The three distinct clusters correspond
to the storage location of the lineitem table. At 6.8 GB, it
contributes 70% of the total data set size, and its placement
thus has the greatest effect on the total cost of storage.

The Pareto-optimal line () shows the best case for
table-granular placement, i.e., there is no cheaper placement
that also reduces benchmark runtime. A system administra-
tor can, therefore, hope at best to hit this line. For most
budgets, Mosaic’s LOPT placement strategy () domi-
nates and offers the choice of having the same performance
at less cost or more performance at the same cost. As indi-
cated in the figure, at a budget of 536 ct, LOPT offers the
same throughput as the Pareto-optimal table placement at
60% of the cost, or 41% of the runtime at the same budget.
Table-granular data placement is only competitive if Mosaic
places all data on the cheapest or most expensive devices.2

This result also shows that when Mosaic just stores a small
part of the working set on fast storage, this already drasti-
cally increases overall throughput. The cost of this increase
is very low if placing data at column granularity. A bud-
get increase of 12% (from 310 ct to 350 ct) speeds up the
benchmark by over 100% (from 117 s to 55.6 s). At higher
costs, where most data fits on the fastest device, Mosaic can-
not gain much advantage from distributing data between
devices (as seen in Figure 5). It thus has equal or — if
the model’s throughput estimates are inaccurate — slightly
worse performance than if the user placed all data on the
fastest device.

Mosaic also visualizes a law of diminishing returns. With
a budget of 600 ct, Mosaic is already within 14% of the best
performance that requires twice the budget, i.e., 1300 ct.
The optimal table granular placement at 600 ct results in
a benchmark that takes 3.7 times as long as at maximum
budget.

5.3 Comparison of Placement Strategies
In this experiment, we compare Mosaic’s three placement

strategies, LOPT, HOT table, and HOT column, against

2To keep the number of variants for table granularity mea-
surements manageable, the four smallest tables always reside
on NVMe SSD. The cheapest measurement at column gran-
ularity is therefore cheaper than the cheapest measurement
at table granularity.

×1.99

×1.301.99

1

2.58

0

1

2

3

HOT table HOT column LOPT

Data placement algorithm

R
el

at
iv

e
sp

ee
d

u
p

Figure 7: Comparison of placement algorithms nor-
malized to HOT table. Each bar is the sum of 56
runs of the TPC-H benchmark (SF 30). Each run
uses a distinct device configuration.

each other. How much the placement strategies differ in
performance depends on the storage configuration. If, for
example, only one storage device is available, all strategies
place data identically. To obtain a representative compari-
son of the strategies, we compare performance across a range
of device configurations. For each of the four devices in Ta-
ble 1, we fix its proportion of the total storage to a value
between 0% and 100% of the data set size, in 20% steps.
We then recursively fix the values of the remaining three
devices in the same way. We only consider configurations
whose storage adds up to 100% of the data set size. Mo-
saic thus runs the benchmark for 56 configurations for each
strategy. We then add the runtimes of those benchmarks.

Figure 7 shows the results for the TPC-H benchmark. It
shows the speedup of the placement strategies over the base-
line, HOT table. HOT table is worse than the other two
strategies, as the TPC-H data set has many large but cold
columns on otherwise hot tables. At table granularity, these
columns waste valuable storage space that hot columns of
different tables could have used. Data placement at column
granularity provides a 99% speedup, confirming our findings
in Section 5.2. LOPT is ≈ 25% faster still than HOT col-
umn, showing the advantage of a tierless device pool over
a tiered architecture even with just four devices. Because
throughput gaps between SATA SSD, RAID 5, and HDD
are small, LOPT can distribute columns often accessed to-
gether between those devices. HOT column places as much

2670

0.0

2.5

5.0

7.5

350 400 450 500

Cost of storage [ct]

Q
u

er
y

ru
n

ti
m

e
[s

]

Q19

Q20

Q18
Q14

Q8

Q172

3

4

350 400

Q9

Q19

Q8

Q3

Q7

Q18
2

3

4

400 450

(a) Default LOPT. The zoomed-in sections show the biggest winner
and loser queries at budgets of 400 and 450 cents.

0.0

2.5

5.0

7.5

350 400 450 500

Cost of storage [ct]

Q
u

er
y

ru
n

ti
m

e
[s

]

Q19
Q20

Q8

Q17
Q14
Q182

3

4

5

350 400

Q9

Q19

Q8

Q18

Q7

Q3

2

3

4

400 450

(b) Modified LOPT. Placement is constrained so that no query may
become slower. The zoomed-in sections show the same queries as (a).

Figure 8: Runtime per query for two different LOPT variants (TPC-H SF 30). The solid red line shows
average runtime, the dashed lines show runtime of each of TPC-H’s 22 queries.

data as possible on SATA SSD, preferring it over HDD and
RAID 5, leaving optimization potential on the table. We,
therefore, chose LOPT as Mosaic’s default strategy.

5.4 Per-Query Analysis of LOPT
While average query performance increases monotonically

with budget, there are ‘loser queries’ that either do not be-
come faster or even degrade with increasing budget, since
LOPT’s only goal is to minimize the sum of all query run-
times. Figure 8a shows per-query performance at varying
budgets. The two zoomed-in sections show the biggest ‘win-
ner’ and ‘loser’ queries at 400 and 450 cents.

At 400 ct (upper cutout), Q18 and Q19 are slower than
at 350 ct, as LOPT moves the columns of lineitem read by
both queries from RAID back to HDD. This makes space for
four columns read by the other queries, reducing overall run-
time. When the budget increases to 500 ct (lower cutout),
the pattern reverses: LOPT moves lineitem’s primary key
back to RAID from SATA SSD. This slightly slows down
most queries reading it but allows LOPT to move Q18’s and
Q19’s previously demoted columns back to SATA SSD.

The user may deem such regressions unacceptable, i.e.,
they require guarantees that some specific subset — or all
queries — do not slow down after a system upgrade. In this
case, Mosaic supports the addition of a new constraint to
LOPT, setting a query’s (or all queries’) current execution
time as an upper bound. Figure 8b shows LOPT’s perfor-
mance with this constraint. While the throughput is 10.1%
worse on average, there are no more unpredictable perfor-
mance regressions.

5.5 Placement Calculation Cost of LOPT
As stated in Section 4.5, LOPT is NP-hard. Heuristics of

modern MIP solvers, however, keep computation time at a
reasonable level even for larger problems. We first evaluate
LOPT’s placement calculation time for smaller sized work-
loads. The results are shown in Table 3. The JOB workload
by Leis et al. [24] benchmarks cardinality estimators with
queries that join many tables. Many of its table scans only
touch primary and foreign keys. It thus has only a few more
distinct table scans than TPC-H. In both cases, LOPT finds
the optimal solution effectively instantaneous for arbitrary
data set sizes. TPC-DS has over 3 times as many distinct
table scans as TPC-H. LOPT’s performance with TPC-DS

Table 3: LOPT search time for a placement solution
for four devices with three different workloads. It
shows the time to find a solution that is within 5%
or 1% of the theoretical optimum, or is optimal.

table scans time [s]

queries total dist. < 5% < 1% opt

TPC-H 22 86 58 < 1 < 1 < 1
JOB 113 977 62 < 1 < 1 < 1
TPC-DS 67 492 193 < 1 ≈ 4 ≈ 64

15 30

60

120

240

480

960

20

40

60

80

0 200 400 600

#Tables

#
D

ev
ic

es

Figure 9: Computation time in seconds for a solu-
tion within 5% of the lower bound. The z-axis is log2

scale, i.e., time doubles with each contour step.

is acceptable, but at ≈ 1 minute for the optimal solution it
is considerably worse.

We now move on to progressively larger workloads, to see
how LOPT scales with more devices, tables, and queries. We
load multiple independent instances of TPC-H, multiplying
the number of tables and queries by up to 80 times (result-
ing in up to 1760 queries on 640 tables with 4880 columns)
and simulate each device up to 20 times (up to 80 in to-
tal). Note that this is an adverse workload, since as each
column is accessed by 22 queries at most, there is no fast
way for Gurobi to prune the solution space, i.e., all TPC-H
instances are ‘warm’. Figure 9 shows how long Mosaic takes
to calculate a placement within 5% of the theoretical lower
bound for all permutations. The worst case is ≈ 52 minutes

2671

0

30

60

90

120

150

100 80 60 40 20 0

Scans sampled [%]

C
al

c.
ti

m
e

[m
in

]

0

50

100

150

100 80 60 40 20 0

Scans sampled [%]

S
lo

w
d

ow
n

[%
]

Figure 10: Left: Impact of sampling on placement
calculation time. Right: Impact of sampling on pre-
dicted runtime performance. 400 TPC-H SF 30 in-
stances, 8 devices.

50

100

500 750 1000 1250

Cost of storage [ct]

R
u

n
ti

m
e

[s
]

Placement mode

budget

capacity

Figure 11: Comparison of placement modes for the
TPC-H benchmark (SF 30) using LOPT. In bud-
get mode, Mosaic chooses its storage devices for a
budget. In capacity mode, Mosaic places data on 56
predefined device configurations.

for 80 devices and 640 tables. Cases that are realistic for a
single node (i.e. ≤ 10 devices) take less than 8 minutes.

Being NP-hard, LOPT has its limits. With 1200 TPC-H
instances (26400 queries, 10800 tables, 73200 columns) on
eight devices, computing a solution within 5% of the lower
bound takes ≈ 21.5 hours. This can be remedied with sam-
pling, i.e., having LOPT only consider a subset of all table
scans. Figure 10 shows the impact of sampling with 400
TPC-H instances (8800 queries, 3200 tables, 24400 columns)
on eight devices. Since all columns are always ‘warm’ in this
adverse workload, each discarded table scan removes valu-
able information. Even here, sampling is still beneficial. If
a predicted slowdown of ≈ 9% is acceptable, it is possible to
sample 60% of the table scans, thus reducing the placement
calculation time by 44%, from 141 to 80 minutes.

5.6 Capacity Mode vs. Budget Mode
Figure 11 compares Mosaic’s capacity mode () against

its budget mode (). For budget mode, we repeat the mea-
surement of Section 5.2. For capacity mode, we use the
method of the experiment in Section 5.3 to generate 56 de-
vice configurations and use the LOPT strategy for place-
ment. Each configuration () could have been chosen by a
system administrator using educated guesses. Because Mo-
saic uses the LOPT strategy for both placement modes, we
can now quantify the advantage of having Mosaic assisting
in the purchase decision () over pre-purchasing hardware
and only then letting Mosaic place data ().

16 out of 56 capacity configurations are Pareto-optimal
(). For TPC-H, there is a probability of ≈ 29% of a sys-
tem administrator picking a desirable storage device config-
uration by guessing which could be the best. But even if
they pick a Pareto-optimal configuration, its corresponding

T
P

C
-H

T
P

C
-D

S

1 2 3 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Budget (relative to HDD)

R
u

n
ti

m
e

(r
el

at
iv

e
to

ch
ea

p
es

t
b

u
d

g
et

)

SF 30

SF 100

measured

predicted

Figure 12: Predicted vs. actual performance for the
TPC-H and TPC-DS benchmarks (SF 30 and 100).

budget counterpart dominates it. On a price-point-per-price-
point comparison, the budget approach is ≈ 26% faster than
the Pareto optimum of the capacity mode.

5.7 Prediction Accuracy
In this section, we evaluate whether predictions made by

Mosaic’s table scan model are accurate. For this benchmark,
we use the LOPT placement strategy in budget mode. Mo-
saic predicts the runtime for a range of maximum budgets,
both for TPC-H and TPC-DS, at scale factors of 30 and 100.
It then places data according to the budget constraint and
runs the benchmark. We then compare Mosaic’s predicted
benchmark runtime with the actual runtime.

Figure 12 shows the predicted runtime for a budget ()
and the measured time after Mosaic placed the data ().
For TPC-H, the absolute mean error between predicted and
measured time across all scale factors and budgets is only
4.1%. For TPC-DS, it is 19.0%, with higher budgets having
a higher error than lower budgets. The reason is that TPC-
DS, is CPU-bound on the evaluation system, when Mosaic
stores most of the data on the NVMe SSD. At lower budgets,
the slower but cheaper devices hide the CPU overhead.

While the prediction is accurate when running an I/O-
dominated workload or using slow devices, the prediction be-
comes inaccurate when the workload becomes CPU-bound.
This is because Mosaic cannot predict the throughput of the
DBMS’s execution engine. While slower devices shadow the
execution overhead, faster devices expose it. The experi-
ment, however, shows that Mosaic is useful, even in CPU-
heavy workloads for the following reasons: (1) ≈ 20% error
is still acceptable when the status quo is having no predic-
tion; (2) Mosaic brings the most benefit when users have
limited budget and thus having most of the data on fast
devices is not an option. Here, Mosaic is quite accurate,
even for TPC-DS; (3) Mosaic correctly predicts the shape
of the graph, showing where a small investment makes a
huge return and when diminishing returns kick in. Mosaic’s
purchase recommendations are still valid, and it finds the
fastest configuration for the given cost. It just does not take
the bottleneck of the execution engine into account. We
thus argue that even for CPU-bound benchmarks, Mosaic
still offers great benefits over storage engines without pre-
dictive capabilities.

2672

0.16
0.27

0.89

0.01
0.07

0.38

0.03 0.04 0.040.050.04 0.05

0.00

0.25

0.50

0.75

1.00

HDD SATA SSD NVMe SSD

q
u

er
ie

s/
s

Mosaic Umbra Spark MariaDB ColumnStore

Figure 14: Mosaic’s TPC-H throughput (SF 30)
compared to Umbra and two Big Data query en-
gines, all 22 queries distributed uniformly.

381 406

147 300

300 400 500 300 400 500

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Total cost of storage [ct]

R
u

n
ti

m
e

(n
or

m
al

iz
ed

to
sl

ow
es

t)

specialized general

Figure 13: Performance of 4 out of 1000 TPC-
DS workloads at different budgets for data placed
specifically for the workload and for data placed for
the TPC-DS benchmark in general.

5.8 Impact of Workload
To evaluate how Mosaic adapts to different workloads, we

generate 1000 workloads with 10 random TPC-DS queries
each. We pick four of those workloads that deviate the most
from the shape in Figure 6 and compare their performance
at different budgets. We have chosen them for a number of
characteristics, for instance workload 147 profits above av-
erage at low budgets while workloads 300 and 406 profit at
higher budgets. Workload 381 has a big performance jump
at medium budgets. The performance of all 1000 workloads
increases by more than 100% at 500 ct. Figure 13 shows Mo-
saic’s performance for the four chosen workloads with data
placed specifically for the workload () and data placed
for the original TPC-DS workload (), which is a superset
of the four workloads.

The workloads profit from a placement specifically tai-
lored to them. Since the working set is smaller, Mosaic can
move a larger percentage to devices with higher throughput.
Each workload, however, also sees improvements with the
generic TPC-DS placement. This experiment shows that —
while it is beneficial to give Mosaic a trace that represents
the actual workload as closely as possible — performance is
still acceptable if the trace is a superset. Our earlier evalu-
ations show that Mosaic finds a placement quickly even for
large traces. A superset can be chosen (e.g. all queries run
in the last month) without hurting performance too much.

5.9 Mosaic vs. Big Data Query Engines
In this section, we compare the performance of Mosaic

against Spark and MariaDB ColumnStore as representatives
of big data query engines. These OLAP systems are opti-
mized to read data in column-major format. Both claim to
be competitive on a single node. We also compare Mosaic
against vanilla Umbra as a representative of conventional
RDBMS. Umbra buffers data into main memory when first
accessed. Consequently, Umbra is an order of magnitude
faster when data is already buffered. To benchmark I/O
speed, we clear Umbra’s buffer between queries.

Figure 14 shows the throughput for TPC-H. For all three
configurations, we store the data set on just one device. Um-
bra is optimized for in-memory data sets and SSD. Its per-
formance degrades on devices not suited for random I/O,
but it is slower than Mosaic even on NVMe SSD, as Mosaic’s
compression results in a higher effective throughput. Um-
bra’s table scans furthermore read all columns while Mosaic
only reads queried columns. Spark and MariaDB Column-
Store are slower by an order of magnitude. While Umbra
and Mosaic speed up when moving the data set to an NVMe
SSD, Spark and MariaDB only become marginally faster.

When reading from disk, Spark has a similar throughput
to Umbra with Mosaic. It is optimized for distributed work-
loads and introduces abstraction layers required to make it
compatible to its many supported file formats. This, how-
ever, results in the computation time shadowing the I/O
time when running on a single node. Query 7, for example,
takes 42 seconds at SF 30, even with all data on NVMe SSD.
Even if we ignore four seconds of startup time, Umbra with
Mosaic is ≈ 30 times faster at 1.2 seconds. At SF 100, it is
still 10 times faster than Spark at SF 30. Spark spends more
time on garbage collection (≈ 2 seconds) than Umbra takes
for the whole query. On a single node, there is therefore
not much to be gained by integrating Mosaic’s smart data
placement into big data query engines. Mosaic therefore has
an important use case for single node systems with big data
sets.

6. CONCLUSION
We present Mosaic, a storage engine optimized for scan-

heavy workloads on RDBMS. It manages columnar data in
a tierless device pool and supports pluggable data placement
strategies. We evaluate three such strategies, including our
linear programming placement strategy (LOPT), based on
a model for predicting the throughput of table scans. In
capacity mode, LOPT places data on previously purchased
devices. In budget mode, LOPT predicts performance for a
budget and makes purchase recommendations.

We evaluate Mosaic on two data sets to show the advan-
tage of Mosaic’s column-granular data placement over exist-
ing approaches of RDBMS and big data query engines. Mo-
saic outperforms them by an order of magnitude and beats
Umbra in OLAP queries when the working set does not fit
into DRAM. We show the accuracy of Mosaic’s prediction,
which closely follows the Pareto-optimal price/performance
curve. It is accurate for I/O-bound benchmarks.

We recognize that it is difficult to confirm the results of
this paper without reimplementing Mosaic. We therefore
plan to open-source Mosaic so that our findings can be ver-
ified with third-party RDBMS.

2673

7. REFERENCES
[1] https://facebook.github.io/zstd/, 2020. [accessed

February 27, 2020].

[2] R. Appuswamy, D. C. van Moolenbroek, and A. S.
Tanenbaum. Cache, cache everywhere, flushing all hits
down the sink: On exclusivity in multilevel, hybrid
caches. In MSST, pages 1–14. IEEE, 2013.

[3] M. Athanassoulis, S. Chen, A. Ailamaki, P. B.
Gibbons, and R. Stoica. MaSM: efficient online
updates in data warehouses. In SIGMOD, pages
865–876. ACM, 2011.

[4] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A.
Ross, and C. A. Lang. SSD bufferpool extensions for
database systems. PVLDB, 3(2):1435–1446, 2010.

[5] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt.
CAST: tiering storage for data analytics in the cloud.
In HPDC, pages 45–56. ACM, 2015.

[6] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[7] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and
S. B. Zdonik. Anti-caching: A new approach to
database management system architecture. PVLDB,
6(14):1942–1953, 2013.

[8] C. Diaconu, C. Freedman, E. Ismert, P. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL server’s memory-optimized OLTP
engine. In SIGMOD, pages 1243–1254. ACM, 2013.

[9] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F.
Naughton, and A. Halverson. Turbocharging DBMS
buffer pool using SSDs. In SIGMOD, pages
1113–1124. ACM, 2011.

[10] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA database: data
management for modern business applications.
SIGMOD Record, 40(4):45–51, 2011.

[11] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and
R. Rangaswami. Cost effective storage using extent
based dynamic tiering. In FAST, pages 273–286.
USENIX, 2011.

[12] Gurobi Optimization LLC. Gurobi optimizer reference
manual, 2019.

[13] H. Herodotou and S. Babu. Profiling, what-if analysis,
and cost-based optimization of mapreduce programs.
PVLDB, 4(11):1111–1122, 2011.

[14] H. Herodotou and E. Kakoulli. Automating
distributed tiered storage management in cluster
computing. PVLDB, 13(1):43–56, 2019.

[15] S. Huang, Q. Wei, D. Feng, J. Chen, and C. Chen.
Improving flash-based disk cache with lazy adaptive
replacement. TOS, 12(2):8:1–8:24, 2016.

[16] I. Iliadis, J. Jelitto, Y. Kim, S. Sarafijanovic, and
V. Venkatesan. ExaPlan: Efficient queueing-based
data placement, provisioning, and load balancing for
large tiered storage systems. TOS, 13(2):17:1–17:41,
2017.

[17] N. S. Islam, X. Lu, M. Wasi-ur-Rahman, D. Shankar,
and D. K. Panda. Triple-h: A hybrid approach to
accelerate HDFS on HPC clusters with heterogeneous
storage architecture. In 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 101–110. IEEE, 2015.

[18] T. Ivanov and M. Pergolesi. The impact of columnar
file formats on SQL-on-hadoop engine performance: A
study on ORC and parquet. Concurrency and
Computation: Practice and Experience, 32(5), 2020.

[19] Z. Jiang, Y. Zhang, J. Wang, and C. Xing. A
cost-aware buffer management policy for flash-based
storage devices. In DASFAA, volume 9049 of Lecture
Notes in Computer Science, pages 175–190. Springer,
2015.

[20] P. Jin, Y. Ou, T. Härder, and Z. Li. AD-LRU: an
efficient buffer replacement algorithm for flash-based
databases. Data Knowl. Eng., 72:83–102, 2012.

[21] E. Kakoulli and H. Herodotou. OctopusFS: A
distributed file system with tiered storage
management. In SIGMOD, pages 65–78. ACM, 2017.

[22] W. Kang, S. Lee, and B. Moon. Flash-based extended
cache for higher throughput and faster recovery.
PVLDB, 5(11):1615–1626, 2012.

[23] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In ICDE, pages
195–206. IEEE, 2011.

[24] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[25] V. Leis, M. Haubenschild, A. Kemper, and
T. Neumann. LeanStore: In-memory data
management beyond main memory. In ICDE, pages
185–196. IEEE, 2018.

[26] X. Liu and K. Salem. Hybrid storage management for
database systems. PVLDB, 6(8):541–552, 2013.

[27] T. Luo, R. Lee, M. P. Mesnier, F. Chen, and
X. Zhang. hStorage-DB: Heterogeneity-aware data
management to exploit the full capability of hybrid
storage systems. PVLDB, 5(10):1076–1087, 2012.

[28] T. Neumann and M. J. Freitag. Umbra: A disk-based
system with in-memory performance. In CIDR.
www.cidrdb.org, 2020.

[29] K. Oe and K. Okamura. A hybrid storage system
composed of on-the-fly automated storage tiering
(OTF-AST) and caching. In CANDAR, pages
406–411. IEEE, 2014.

[30] K. K. R., A. Anwar, and A. R. Butt. hatS: A
heterogeneity-aware tiered storage for hadoop. In
CCGRID, pages 502–511. IEEE, 2014.

[31] K. K. R., M. S. Iqbal, and A. R. Butt. VENU:
orchestrating SSDs in hadoop storage. In BigData,
pages 207–212. IEEE, 2014.

[32] K. K. R., B. Wadhwa, M. S. Iqbal, M. M. Rafique,
and A. R. Butt. On efficient hierarchical storage for
big data processing. In CCGrid, pages 403–408. IEEE,
2016.

[33] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In MSST, pages
1–10. IEEE, 2010.

[34] R. Stoica and A. Ailamaki. Enabling efficient OS
paging for main-memory OLTP databases. In DaMoN,
page 7. ACM, 2013.

[35] C. Ungureanu, B. Debnath, S. Rago, and A. Aranya.
TBF: A memory-efficient replacement policy for
flash-based caches. In ICDE, pages 1117–1128. IEEE,
2013.

2674

https://facebook.github.io/zstd/

[36] A. van Renen, V. Leis, A. Kemper, T. Neumann,
T. Hashida, K. Oe, Y. Doi, L. Harada, and M. Sato.
Managing non-volatile memory in database systems.
In SIGMOD, pages 1541–1555. ACM, 2018.

[37] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong,
A. Motivala, and T. Cruanes. Building an elastic
query engine on disaggregated storage. In NSDI, pages
449–462. USENIX Association, 2020.

[38] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A
simulation approach to evaluating design decisions in
MapReduce setups. In MASCOTS, pages 1–11. IEEE,
2009.

[39] H. Wang and P. J. Varman. Balancing fairness and
efficiency in tiered storage systems with

bottleneck-aware allocation. In FAST, pages 229–242.
USENIX, 2014.

[40] X. Wu and A. L. N. Reddy. Exploiting concurrency to
improve latency and throughput in a hybrid storage
system. In MASCOTS, pages 14–23. IEEE, 2010.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
NSDI, pages 15–28. USENIX, 2012.

[42] G. Zhang, L. Chiu, C. Dickey, L. Liu, P. Muench, and
S. Seshadri. Automated lookahead data migration in
SSD-enabled multi-tiered storage systems. In MSST,
pages 1–6. IEEE.

2675

	Introduction
	Background and Related Work
	Heterogeneous Storage Frameworks for Big Data Query Engines
	Heterogeneous Storage in RDBMS
	Prediction and Storage Recommendation

	Mosaic System Design
	Metadata
	Storage Format
	Data Retrieval
	Data Placement

	Data Placement Strategies
	A Model for Predicting Table Scan Time
	Responsibilities of a Strategy
	HOT Strategy at Table Granularity
	HOT Strategy at Column Granularity
	Linear Optimization Strategy

	Evaluation
	Benchmarks
	Mosaic vs. Traditional RDBMS
	Comparison of Placement Strategies
	Per-Query Analysis of LOPT
	Placement Calculation Cost of LOPT
	Capacity Mode vs. Budget Mode
	Prediction Accuracy
	Impact of Workload
	Mosaic vs. Big Data Query Engines

	Conclusion
	References

