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ABSTRACT
Physical and thermal restrictions hinder commensurate per-
formance gains from the ever increasing transistor density.
While multi-core scaling helped alleviate dimmed or dark
silicon for some time, future processors will need to become
more heterogeneous. To this end, single instruction set ar-
chitecture (ISA) heterogeneous processors are a particularly
interesting solution that combines multiple cores with the
same ISA but asymmetric performance and power charac-
teristics. These processors, however, are no free lunch for
database systems. Mapping jobs to the core that fits best
is notoriously hard for the operating system or a compiler.
To achieve optimal performance and energy efficiency, het-
erogeneity needs to be exposed to the database system.

In this paper, we provide a thorough study of parallelized
core database operators and TPC-H query processing on
a heterogeneous single-ISA multi-core architecture. Using
these insights we design a heterogeneity-conscious job-to-
core mapping approach for our high-performance main mem-
ory database system HyPer and show that it is indeed possi-
ble to get a better mileage while driving faster compared to
static and operating-system-controlled mappings. Our ap-
proach improves the energy delay product of a TPC-H power
run by 31% and up to over 60% for specific TPC-H queries.

Categories and Subject Descriptors
H.2 [Database Management]: Systems
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dark silicon; heterogeneous; multi-core; energy efficiency

1. INTRODUCTION
Following Moore’s law, transistor density on a given chip

area continues to double with each process generation. Cou-
pled with Dennard scaling, i.e., the proportional scaling of
threshold and supply voltages to keep power density con-
stant, the growing number of transistors led to commen-
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surate performance increases in the past. In recent years,
however, supply voltage scaling has slowed down [10]. The
failure of Dennard scaling and a constant processor power
budget, which is constrained by thermal and physical restric-
tions, now pose the dilemma that either transistors need to
be underclocked or not all transistors can be used simulta-
neously, leading to dimmed or dark silicon [7, 8]. Although
multi-core scaling helps to alleviate dark silicon, it is just a
workaround as the fraction of transistors that can be pow-
ered continues to decrease with each process generation [2].
Future processors will thus need to become more hetero-
geneous, i.e., be composed of cores with asymmetric per-
formance and power characteristics to use transistors effec-
tively [2, 7, 8, 29].

Examples of commercially available heterogeneous proces-
sors include the IBM Cell processor, Intel CPUs with in-
tegrated graphics processors, AMD accelerated processing
units, and the Nvidia Tegra series. With big.LITTLE [23],
ARM proposes another, particularly interesting heteroge-
neous design that combines a cluster of high performance
out of order cores (big) with a cluster of energy efficient
in-order cores (LITTLE). Despite being asymmetric in per-
formance and power characteristics, both types of cores im-
plement the same instruction set architecture (ISA). Single-
ISA multi-core architectures are desirable for a number of
reasons: (i) LITTLE cores reduce energy consumption dur-
ing phases of low load, (ii) multiple LITTLE cores provide
high parallel performance while big cores ensure high serial
performance, mitigating the effects of Amdahl’s law, (iii)
the single instruction set allows to maintain a single im-
plementation, and (iv) heterogeneous general-purpose cores
avoid over-specialization that can occur with ASICs and FP-
GAs. While ARM big.LITTLE processors are currently only
available for the embedded and mobile market, AMD has
announced 64 bit big.LITTLE server processors for 2014.

Single-ISA heterogeneous processors, however, are no free
lunch for database systems. Each query processing job needs
to be mapped to a core that is best suited for the job. just
like non-uniform memory access (NUMA) needs to be taken
into account during query processing [17, 16], we argue that
processor heterogeneity needs to be exposed to the database
system [3] in order to achieve an optimal job-to-core map-
ping. Such a mapping is both important and challenging:
heuristics based on load, CPI, and miss rates do not achieve
optimum performance and energy efficiency [29, 3]. Whereas
the operating system and compilers rely on such heuristics,
database systems have a priori knowledge about the work-
load, enabling them to make better mapping decisions.



0 5 10 15 20 25 30
0

20

40

60

80

DBMS-controlled
job-to-core mapping

250 MHz
600 MHz

800 MHz

1600 MHz

Powersafe

OndemandPerformance

response time [s]

en
er

g
y

[J
]

fixed clock (LITTLE) fixed clock (big) OS scheduling

Figure 1: Response time and energy consumption
of TPC-H scale factor 2 power runs with static and
operating-system-controlled (OS) job-to-core map-
pings. The potential of DBMS-controlled job-to-
mapping is to reduce energy consumption and im-
prove performance compared to fixed clock rates
and OS scheduling. The dashed line indicates a con-
stant energy delay product (EDP) relative to the
big cluster at 1600 MHz, i.e., trading an equal per-
centage of performance for energy savings. DBMS-
controlled mapping targets the area below the con-
stant EDP curve.

In this work we examine the potential of a heterogeneity-
conscious DBMS-controlled job-to-core mapping approach
for parallel query execution engines. In particular, we make
the following contributions: (i) We provide a thorough study
on the effects of running parallelized core database operators
and TPC-H query processing on a big.LITTLE architecture.
(ii) Using the insights gained from our study, we design and
integrate a heterogeneity-conscious job-to-core mapping ap-
proach in our high-performance main memory database sys-
tem HyPer [12] and show that it is indeed possible to get
a better mileage while driving faster compared to static and
operating-system-controlled (OS) mappings. (iii) We eval-
uate our approach with the TPC-H benchmark and show
that we improve response time by 14% and reduce energy
consumption by 19% compared to OS-controlled mapping.
This corresponds to a 31% improvement of the energy delay
product. For specific TPC-H queries, we show that improve-
ments of over 60% are possible. (iv) Finally, we explore the
design space for future heterogeneous multi-core processors
in light of dark silicon and highlight the implications for
parallel query execution engines.

While fast query response times have always been of im-
portance in database research, improving energy efficiency
by adapting database software has only recently gained im-
portance. Related work in this area focuses on achieving en-
ergy proportionality in database clusters [26, 14, 15], analyz-
ing energy efficiency of database operators on homogeneous
multi-core servers [28, 9], adapting the query optimizer for
energy efficiency [30], and using specialized hardware such
as FPGAs and ASICs to improve performance and reduce
energy consumption [13, 21]. In contrast to previous work,
we show how to improve energy efficiency and make query
processing faster in the context of single-ISA heterogeneous
multi-core processors. To the best of our knowledge we
are the first to explore this potential for database systems.

The main question we tackle is: How can we make a par-
allel query processing engine use a single-ISA heterogeneous
multi-core processor such that we reduce energy consump-
tion while maintaining or even improving query processing
performance?

Fig. 1 illustrates our goal. It shows response time and
energy consumption for TPC-H scale factor 2 power runs
with static and OS-controlled job-to-core mappings on our
big.LITTLE evaluation system. This initial data confirms
the finding of Tsirogiannis et al. [28] who stated that for
a database server “the most energy-efficient configuration is
typically the highest performing one”. To correlate energy
efficiency and performance, we use the energy delay product
(EDP), which is defined as energy×delay and is measured in
Joules times seconds. It is typically used to study trade-offs
between energy and performance. In the context of query
processing, energy is the energy consumed and delay the
response time to process a query. The dashed line in Fig. 1
indicates a constant EDP relative to the highest performing
configuration (big cluster at 1600 MHz). This means that
along this line we trade an equal percentage of performance
for energy savings. Ideally, DBMS-controlled mapping is
either on or even below this line. Our benchmark reveals
that with current static and OS-controlled mappings even
true energy proportionality, an important aspect in today’s
cluster design [4], cannot be achieved.

In the following, we show that, some parallelized core
database operators achieve a better EDP on the LITTLE
than the big cluster, if evaluated in isolation. This opens the
opportunity for our DBMS-controlled mapping approach.

2. HETEROGENEITY-AWARE PARALLEL
QUERY EXECUTION

For our experiments, we use our high-performance main
memory database system HyPer [12], which we ported to the
ARM architecture [20]. HyPer implements a parallel query
execution engine based on just-in-time compilation [22] and
a morsel-driven parallelization engine [16]. Compared to
classical Volcano-style (tuple-at-a-time) and vectorized (e.g.,
Vectorwise) query execution engines, our data-centric code
generation relies on execution pipelines in which operators
that do not require intermediate materialization are inter-
leaved and compiled together. Such operators include join
probes and aggregations, while join builds mark pipeline
breakers. With the morsel-driven query execution frame-
work, scheduling of pipeline jobs becomes a fine-grained run-
time task. Morsel-driven processing essentially takes frag-
ments of input data coming from either a pipeline breaker or
a base relation, so-called morsels1, and dispatches pipeline
jobs on these morsels to worker threads. The degree of par-
allelism is thereby elastic and can even change during query
execution. Worker threads are created at database startup
and are pinned to cores. Only one thread per hardware
context is created to avoid oversubscription. During query
processing, no thread needs to be created to avoid thread
creation and cleanup costs. Once started, a pipeline job on
a morsel should not migrate to another core as our approach
tries to keep data in registers and low-level caches for as long
as possible. Switching cores would evict these registers and
caches, leading to severe performance degradations.

1Our experiments show that morsels of 100,000 tuples enable
an almost perfect degree of parallelism and load balancing.
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Figure 2: Heterogeneity-aware dispatching: query
pipeline jobs on morsels (i.e., input data fragments)
are dispatched to appropriate cores using a perfor-
mance and energy model (PEM)

In HyPer, all database operators are parallelized such that
the same pipeline job can efficiently run on multiple morsels
in parallel. Mapping of pipeline jobs to worker threads (and
thus cores) is performed by a dispatcher (see Fig. 2). The
mapping decision of the dispatcher can be made at two
points in time: during query optimization or at runtime.
We argue to make this decision at runtime for two impor-
tant reasons. First, mapping at optimization time has to rely
on an estimate of intermediate result set cardinalities, while
at runtime actual cardinalities are known. Second, runtime-
based mapping can further take response time, energy, and
other quality of service constraints into account.

To make the job-to-core mapping of the dispatcher con-
scious of heterogeneity, we extended our system with a Per-
formance and Energy Model (PEM). The dispatcher queries
the PEM for each operator of a pipeline job to determine
which cluster is the better choice for the job in terms of
energy consumption and performance, encapsulated in the
EDP. The PEM consists of multiple segmented multivariate
linear regression models that estimate the energy consump-
tion and performance of the parallelized database operators
given a target cluster (LITTLE or big), a specified number of
cores, and operator-specific parameters. The set of these pa-
rameters is selected carefully for each operator, such that the
amount of data points that need to be collected to develop
the model for a given hardware platform stays small. The
data to calibrate the model is either collected through ini-
tial benchmarking or are gathered and adaptively updated
during query processing. Our PEM-based approach is not
limited to ARM big.LITTLE systems but is generally appli-
cable to any kind of single-ISA heterogeneous multi-core ar-
chitecture. This also includes architectures with more than
two clusters and non-symmetrical numbers of cores. Besides
HyPer, we are convinced that our PEM-based approach can
also be integrated in many existing database systems. The
general idea of our approach is independent of query com-
pilation and can be adapted for query engines based on
Volcano- and vectorized execution. Instead of entire opera-
tor pipelines, individual operators are mapped to cores.

Fig. 3 demonstrates morsel-driven query processing and
our heterogeneity-conscious mapping of pipeline jobs to cores
using TPC-H query 14 as an example. Fig. 3(a) shows the
SQL definition of query 14. HyPer parses the SQL state-
ment and creates an algebraic tree, which is then optimized

select 100.00 *
sum(case when p_type like ’PROMO%’

then l_extendedprice * (1 - l_discount)
else 0 end) /

sum(l_extendedprice * (1 - l_discount))
as promo_revenue

from lineitem, part
where l_partkey = p_partkey and

l_shipdate >= date ’1995-09-01’ and
l_shipdate < date ’1995-10-01’

(a) SQL
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Figure 3: Example: processing TPC-H Q14 using
morsel-driven query execution and heterogeneity-
conscious pipeline job-to-core mapping

by a cost-based optimizer. The optimizer estimates that
the cardinality of lineitem after filtering on l_shipdate is
smaller than part. Thus, as shown in Fig. 3(b), the hash
table for the join of the two relations is built on the side of
lineitem. Query 14 is divided into two pipelines. Pipeline
P1 scans lineitem and selects tuples that apply to the re-
striction on l_shipdate. For these tuples the hash table for
the equi-join (B) with part is built. Building the hash table
is a pipeline breaker. The second pipeline P2 scans part and
probes the hash table that resulted from P1. Finally, the ag-
gregation (Γ) and mapping (χ) evaluate the case expression
and calculate the arithmetic expression for the result on the
fly. HyPer generates LLVM code for the two pipeline jobs
and compiles it to efficient native machine code. For each
of the two pipeline jobs, the dispatcher determines the clus-
ter that fits best. It then dispatches jobs on input morsels
of the pipeline to worker threads of the determined clus-
ter. Fig. 3(c) shows the four-way parallel processing of the
equi-join between the filtered tuples of lineitem and part.

As shown in Fig. 3(b), pipeline P1 is mapped to the LIT-
TLE cluster and pipeline P2 is mapped to the big cluster.
Our analysis in Sect. 2.3 shows that building a large hash ta-
ble is faster and more energy efficient on the LITTLE cluster
due to cache and TLB misses as well as atomic compare and
swap instructions. P2 on the other hand contains a string
operation and probes a hash table, which the big cluster is
better suited for. The dispatcher thus switches to the big
cluster when executing P2 jobs.



LITTLE (A7) big (A15)

Cores 4 4
Clock rate 250–600 MHz 800–1600 MHz
Peak issue rate 2 ops/clock 3 ops/clock
Pipeline length 8–10 stages 15–24 stages
Pipeline scheduling in-order out of order
Branch predictor two-level two-level
Cache line 32 byte (VIPT) 64 byte (PIPT)
L1 I-/D-Cache 32 kB/32 kB 32 kB/32 kB

2-way/4-way 2-way/2-way
L2 D-Cache 512 kB (shared) 2 MB (shared)

8-way 16-way
TLB two-level two-level

10 I/10 D 32 I/32 D
256 (2-way) 512 (4-way)

Die area 3.8 mm2 19 mm2

Table 1: Specifications of the LITTLE cluster with
A7 cores and the big cluster with A15 cores

2.1 System Under Test
Our system under test has a Samsung Exynos 5 Octa 5410

processor based on the ARM big.LITTLE architecture. It
features a LITTLE cluster with four Cortex A7 cores and a
big cluster with four Cortex A15 cores. Both clusters allow
dynamic voltage and frequency scaling (DVFS) with clock
rates up to 600 MHz (LITTLE) and 1.6 GHz (big). A cache
coherent interconnect (CCI) ensures cache coherency and
connects the clusters with 2 GB of dual-channel LPDDR3
memory (12.8 GB/s transfer rate). Both, LITTLE and big
cores, implement the ARMv7-A instruction set architecture
(ISA). Despite that, the cores’ features differ: LITTLE cores
are in-order cores with shallow pipelines and a small last-
level cache. big cores are out-of-order cores with a deep
pipeline and a comparatively large last-level cache. These
differences lead to a staggering difference in size: a big core
occupies 5× as much space on the die than a LITTLE core.
Table 1 contains the full set of specifications.

Both clusters further exhibit asymmetric performance and
power characteristics for different workloads. While the
big cluster shows its strengths at compute-intensive work-
loads with predictable branching and predictable memory
accesses, the LITTLE cluster has a much better EDP in
memory-intensive workloads and workloads where branches
are hard to predict, many atomic operations are used, or
data accesses show no temporal or spatial locality. For these
workloads, the out of order pipelines of big cores are fre-
quently stalled, which has a negative impact on energy effi-
ciency [10]. Further, the larger caches of big cores are more
energy hungry than the smaller cores of LITTLE cores. Our
analysis in Sect. 2.3 shows that for certain tasks the LIT-
TLE cluster not only uses less energy but also offers better
performance. In light of dark silicon many LITTLE in-order
cores seem to be more appealing than a single big out of or-
der core for OLAP-style query processing. We show that
four LITTLE cores, which occupy approximately the same
die area as one big core, outperform the big core in almost
all benchmarks.

The operating system of our system is based on Linux
kernel version 3.11, which assigns jobs to cores using the
cluster migration approach. In this approach only one of
the two clusters is active at a time, which makes it a nat-
ural extension to DVFS (through a unified set of P-states).
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Figure 4: Throughput and power consumption of
the stream copy benchmark with a varying number
of threads on the LITTLE and big cluster

The operating system transitions between the two clusters
based on a governor mode that adjusts the P-state. The
default governor mode is ondemand, which sets the cluster
and its clock rate depending on current system load. Clus-
ter switching completes in under 2,000 instructions on our
hardware. We use the cpufreq library to switch clusters
and clock rates from inside the database system. Upcom-
ing big.LITTLE processors and newer kernel versions will
implement two more operating system scheduling modes:
in-kernel switching (IKS) and global task scheduling (GTS).
IKS pairs a LITTLE with a big core and switches on a per-
core basis. Beyond that, GTS enables true heterogeneous
multi-processing, where all cores can be used at the same
time. Unfortunately our hardware does not allow the simul-
taneous usage of all eight cores. However, we expect the
main results presented in this work to be equally true for
upcoming IKS and GTS modes on newer hardware. Even
if operating-system-based job-to-core mapping strategies be-
come more sophisticated, these strategies are likely based on
performance counters and are unaware of memory-level par-
allelism and how misses and other indicators translate into
overall performance. We thus argue strongly for a DBMS-
controlled mapping approach.

Our system under test is connected to a power supply
with a power meter such that we can measure the actual
energy drawn by the whole system from the wall socket. The
power meter has a sampling rate of 10 Hz and a tolerance of
2%. It exposes its collected data to the system via a USB
interface. Being idle, the system draws 2 W. Under load, a
single LITTLE core draws 240 mW, a big core 2 W.

2.2 Initial Benchmarks
In order to get an estimate for the peak sustainable mem-

ory bandwidth of our system under test, we first run the
STREAM benchmark [18]. Fig. 4 shows the throughput and
power consumption of the STREAM copy benchmark with
a varying number of threads on the LITTLE and big cluster.
For reasons of brevity we do not show the scale, add, and
triad results as these only differ by a constant factor. The
copy benchmark essentially copies an array in memory. We
performed the benchmark with an array size of 512 MB. Re-
ported numbers are an average over multiple runs. With four
threads, the LITTLE cluster achieved a peak bandwidth of
3 GB/s, the big cluster of just over 6 GB/s. The higher copy
performance comes at a price. With the big cluster, the sys-
tem draws close to 8 W while with the LITTLE cluster it
only draws around 3 W.
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Figure 6: Response time and energy consumption of multi-threaded hash equi-join, hash group-by, aggrega-
tion, and merge sort operators on the LITTLE and big cluster with varying clock rates and working set sizes
that (a) fit in the last level cache (LLC) of the cluster and (b) exceed the LLC of the cluster
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Figure 5: Single- and multi-threaded execution of
the 22 TPC-H queries (scale factor 2) on the clusters

In a second benchmark we compare single- and multi-
threaded execution of the 22 TPC-H queries on the LIT-
TLE and big cluster at their highest respective clock rate.
Fig. 5 shows the results. With single-threaded execution,
the big core clearly outperforms the LITTLE core. It fin-
ishes processing the queries so much quicker that it’s energy
consumption is even below that of the LITTLE core. With
multi-threaded execution, the big cluster is still faster but
the difference in performance is much smaller. Conversely,
the LITTLE cluster now consumes less energy. As a conse-
quence, the EDP of the LITTLE and big cluster is almost
equal for multi-threaded query processing.

2.3 Analysis of Database Operators
To develop a Performance and Energy Model (PEM) for

our big.LITTLE platform, we first analyze how parallelized
database operators behave on the two clusters. We choose
equi-join, group-by/aggregation, and sort as benchmark op-
erators. The reason behind this choice is that by far most
cycles of a TPC-H run are spent in these operators. We
expect this to be equally true for most analytical workloads.

In an initial experiment (see Fig. 6 and Fig. 7), we bench-
mark the parallelized operators on the two clusters with four
cores each and vary the clock rate of the cores. The LIT-
TLE cluster is benchmarked with clock rates from 250 to
600 MHz and the big cluster with clock rates from 800 to
1600 MHz. Two cases are considered: (i) the working set of
the operator fits in the last-level cache (LLC) and (ii) the
working set exceeds the LLC of the clusters.
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Figure 7: EDP for multi-threaded equi-join, group-
by, aggregation, and sort operators on the LITTLE
and big cluster at the highest clock rate and with
working set sizes exceeding the LLC (cf., Fig. 6)

Equi-join. Joins rank among the most expensive core
database operators and appear in almost all TPC-H queries.
Main memory database systems implement the join opera-
tor usually as either a hash-, radix-, or a sort-merge-join.
In special cases a nested loop or index-based join method is
used. The choice of implementation in general depends on
the system implementation as well as the physical database
design [5]. For equi-joins, HyPer uses a hash join implemen-
tation that allows the hash table to be built in parallel in
two phases. In the first phase, build input tuples are materi-
alized in thread-local storage. Then, a perfectly sized global
hash table is created. In the second phase, each worker
thread scans its storage and sets pointers in the global hash
table using atomic compare-and-swap instructions2. For our
initial benchmark we run a hash equi-join on two relations
with random numeric values. If the working set exceeds the
LLC, the LITTLE cluster shows a much better energy delay
product (EDP) than the big cluster. In Sect. 2.3.1 we fur-
ther explore the join operator and benchmark the build and
probe phases individually. The build phase usually shows
a better EDP on the LITTLE cluster because the atomic
compare-and-swap instructions stall the pipeline to guaran-
tee serializability. This hinders out of order execution and
diminishes the performance advantages of the big cores.

2For details, we refer to [16]. Note that our evaluation sys-
tem is a 32 bit system. Thus the tagging approach described
in [16] is not used, which leads to more pointers being chased.



LITTLE 600 MHz (4 cores) big 1600 MHz (4 cores) big 1600 MHz (1 core)

0 200 400 600 800
0

200

400

600

tuples in R [210 tuples]

re
sp

o
n

se
ti

m
e

[m
s]

0 200 400 600 800
0

1

2

tuples in R [210 tuples]

en
er

g
y

[J
]

(a) build

0 200 400 600 800
0

50

100

150

tuples in R [210 tuples]

re
sp

o
n

se
ti

m
e

[m
s]

0 200 400 600 800
0

0.1

0.2

tuples in R [210 tuples]

en
er

g
y

[J
]

(b) probe

Figure 8: Response time and energy consumption of multi-threaded build and probe phases of the hash
equi-join R B S on the LITTLE and big cluster (build cardinality |R| ≤ 1000 · 210 tuples, probe cardinality
|S| = 1000 · 210 tuples, 8 byte keys)
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Figure 9: Response time and energy consumption of a multi-threaded hash grouping with a varying number
of input tuples in R and a varying number of result groups (distinct keys) on the LITTLE and big cluster

Group-by/aggregation. Groupings/aggregations occur
in all TPC-H queries. In HyPer parallel aggregation is im-
plemented using a two-phase aggregation approach similar
to IBM DB2 BLU’s aggregation [25]. First, worker threads
pre-aggregate heavy hitters using a thread-local, fixed-size
hash table. When the table is full, it is flushed to overflow
partitions. In the second phase these partitions are then re-
peatedly exchanged, scanned, and aggregated until all parti-
tions are finished. For our benchmark we separate two cases:
pure grouping for duplicate elimination and pure aggrega-
tion with only a single group. As our results show, when
the working set exceeds the LLC, both cases show different
performance and power characteristics. While pure aggre-
gation profits from the big cores’ higher compute power,
pure grouping has a better EDP on the LITTLE cluster. In
our grouping benchmark, 66% of keys were duplicates. In
Sect. 2.3.2 we show that the performance and energy effi-
ciency of group-by/aggregation operators depends much on
the number of groups (distinct keys). For few groups, par-
titions (i.e., groups) fit into caches, which benefits the big
cores. Many groups on the other hand lead to many cache
and TLB misses. In this case, pipelines on big cores are
frequently stalled and LITTLE cores achieve a better EDP.

Sort. HyPer uses sorting to implement order by and top-
k clauses, which are both frequently used in TPC-H queries.
Internally, sorting is implemented as a two-phase merge sort.
Worker threads first perform a local in-place sort followed by
a synchronization-free parallel merge phase. For the bench-
mark we sort tuples according to one integer attribute. The

total payload of a tuple is 1 kB. Our results indicate that
sorting always achieves a better EDP on the big cores, no
matter if the working set fits or exceeds the LLC.

The initial benchmark leads us to the conclusion that
working set size is an important indicator for where opera-
tors should be placed. While big cores always show a better
EDP when the working set fits into the LLC, LITTLE cores
show a better EDP for the equi-join and group-by opera-
tors when the working set exceeds the LLC. The benchmark
also shows that running the cores at the highest clock rate
(600 MHz and 1600 MHz, respectively) almost always yields
the best EDP for the cluster. In the following we thus run
cores at their highest clock rate. The PEM can nevertheless
be extended to take frequency scaling into account, which
can save substantial amounts of energy [15].

2.3.1 Equi-join
To better understand the equi-join operator, we split it

into its build and probe phase and repeat our benchmark
for varying input sizes. For the PEM, it is necessary to get
separate estimates for the build and probe phases as both
phases are parts of different pipelines. Fig. 8 shows our re-
sults for both join phases of the parallelized hash equi-join
operator. Building the hash table is the dominant time fac-
tor and shows a much better EDP on the LITTLE cluster for
working set sizes exceeding the LLC. Probing on the other
hand has a better EDP on the big cluster. In light of dark
silicon, however, the LITTLE cluster is better compared to
a single big core, which approximately occupies the same die
area. In this case, the LITTLE cluster is again the winner.
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Figure 10: Segmented linear regression model for
the build phase of the hash equi-join operator

operator variables for regression

equi-join (build) build cardinality
equi-join (probe) size of hash table, probe cardinality
group-by input cardinality, groups (estimate)
aggregation input cardinality, groups (estimate),

number of aggregates
sort input cardinality, number of attributes,

attribute types
all operators string operations (yes/no)

Table 2: Parameters for operator regression models

2.3.2 Group-by/aggregation
Group-by/aggregation is an example for an operator for

which the EDP is not only dependent on the input size, but
also on the number of groups it generates. We repeat our
benchmarks for the group-by operator (without aggregation)
and vary the input size and the number of groups. Fig. 9
shows that the number of groups has a great influence on
operator runtime and energy consumption.

2.3.3 Further operators
Due to lack of space we refrain from showing benchmark

results for expression evaluations and string operations. In
general, the big cluster has a better EDP for complex expres-
sions and string operations. For example, TPC-H Q2, Q9,
and Q13 have costly like predicates. Pipelines that evaluate
these predicates should be executed on the big cluster.

2.4 Performance and Energy Model
The data points collected during our benchmarks build the

foundation for the Performance and Energy Model (PEM)
for our big.LITTLE platform. For other hardware platforms
these benchmarks need to be run initially or can be collected
during query processing. The goal of the PEM is to provide
a model that estimates the response time and energy con-
sumption of database operators given a target cluster (LIT-
TLE or big), the number of threads, and operator-specific
parameters. Table 2 lists the parameters that we consider for
the operators when developing the PEM. For each database
operator we create multiple multivariate segmented linear
regression models using the least squares method: one re-
sponse time and one performance model for each combina-
tion of target cluster and number of threads. In general,
for clusters c1, . . . , cn with |ci|, 1 ≤ i ≤ n cores each and |o|
operators,

∑
i∈{1,...,n} |ci| · |o| · 2 segmented linear regression

models are created. We use the R C++ library to auto-
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Figure 11: TPC-H (scale factor 2) evaluation

matically compute the models given our benchmark results.
Computing the models takes less than a few seconds. Sim-
ilarly the models can be quickly refined if new data points
were collected during query processing.

All database operators that we study show a linear cor-
relation given the independent parameters we have chosen
for the respective operator. We regard the two cases where
the working set of the operator fits into the LLC and the
case where the working set exceeds the LLC3. The models
are thus divided into two segments. The first segment is a
model for working sets that fit into the LLC and the second
segment is a model for working sets that exceed the LLC.

Fig. 10 shows an example of our segmented linear regres-
sion model for the build phase of the hash equi-join opera-
tor. For each of the two segments, an equal number of data
points is collected. The predictor functions for the LITTLE
and big clusters estimate the data points with only a negli-
gible residual error.

2.5 Heterogeneity-Conscious Dispatching
The dispatcher uses the Energy and Performance Model

(PEM) to estimate the response time and energy consump-
tion of an execution pipeline if ran on a specific cluster of
the heterogeneous processor. For a pipeline p with opera-
tors o1, . . . , on, response time and energy consumption, and
thus also the energy delay product (EDP), for the LITTLE
and big cluster are estimated by querying the PEM for each
of the operators and each of the clusters. In general, the
response time rp for pipeline p on a cluster c is estimated as∑

i∈{1,...,n} rc,oi(ctx ), where rc,oi is the response time pre-
dictor function for operator oi on cluster c and ctx is a con-
text that contains the operator-specific parameters. Energy
consumption is estimated analogously. For a pipeline, the
dispatcher estimates response time and energy consumption
for all clusters and dispatches the pipeline jobs to the clus-
ter that exhibits the best weighted EDP. The weights are
user-definable and allow to either put a stronger emphasis
on energy efficiency or performance. For our evaluation we
used a 60/40 ratio where we set the weight for performance
to 0.6 and the weight for energy efficiency to 0.40.

2.6 Evaluation
We implemented our heterogeneity-conscious dispatching

approach in our HyPer system and evaluate its performance
and energy efficiency using the TPC-H benchmark by com-
paring our approach (DBMS) against the operating system’s

3The only database operator not showing a linear correlation
is the cross product. Cross products, however, occur only
rarely in real use cases and are not considered in our PEM.



cycles time energy EDP
in M [s] [J] [J·s]

LITTLE 600MHz 80,623 0.18 0.5 0.09
big 1600MHz 104,392 0.17 1.31 0.22
OS ondemand 102,659 0.22 1.4 0.31
DBMS (our app.) 68,435 0.15 0.77 0.12

Table 3: TPC-H Q14 (scale factor 2) evaluation

ondemand cpufreq governor (OS ondemand) and running
TPC-H on the LITTLE and big cluster at a fixed clock
rate of 600 MHz and 1600 MHz, respectively. We do not
show results for the other OS governors “performance” and
“powersafe” as these correspond to the big cluster at highest
clock rate and LITTLE cluster at lowest clock rate config-
uration, respectively. Scale factor 2 is the largest TPC-H
data set that fits into the main memory of our system under
test. Fig. 11 shows the results of our benchmark. Reported
response time and energy numbers are the sum of all 22
TPC-H queries and are an average of multiple runs. Fig. 12
shows the detailed results for all 22 queries. When compar-
ing against the default operating system setting, our DBMS
approach decreases response time by 14% and saves 19% of
energy, thus getting a better mileage while being faster. This
corresponds to a 31% improvement of the EDP. Our results
show that when running the clusters at their highest clock
rate, the LITTLE and big cluster can barely be separated.
Compared to fixed clock rates the EDP is improved by 12%
compared to the LITTLE cluster and 14% compared to big
cluster. These improvements are much better than what
could be achieved with frequency scaling and also lie below
the constant EDP curve relative to the highest performing
configuration (cf. Fig 1).

Not all queries profit equally from our DBMS approach.
Fig. 12 shows the detailed evaluation results for the TPC-H
scale factor 2 benchmark. The queries that profit most are
Q5, Q14, and Q18. The EDP for all these queries is im-
proved by more than 40%. For Q5, Q14, and Q19, response
times are even faster than what was originally benchmarked
with the big cluster at the highest clock rate. These queries
have pipelines that better fit the LITTLE than the big clus-
ter. The OS likely draws the wrong conclusions when such
a query is executed. As it only sees a load spike it thus
gradually increases clock rate by increasing the P-state. Ul-
timately it will switch to the big cluster and reach the high-
est clock rate. Our DBMS-controlled approach on the other
hand enforces the LITTLE cluster for the aforementioned
pipelines. For Q1 where it seems that DBMS-controlled
mapping can do little to improve the EDP as the query con-
tains no joins and only a single pipeline, DBMS-controlled
mapping still improves the EDP significantly compared to
OS-controlled mapping. This is because OS ondemand has
to react to the sudden load spike and gradually increases
the clock rate of the cores. Our approach on the other hand
knows that Q1 is best executed on the big cluster at the
highest clock rate and immediately switches to that config-
uration. After the query is finished, the clock rate can be
decreased again. The same applies to queries Q2, Q3, Q6,
Q8, Q11, Q13, Q15, Q16, Q17, Q20, Q21, Q22. All these
queries are dispatched exclusively to the big cluster. To a
certain extent this is due to our EDP weights. Changing the
weights in favor of energy efficiency results in more pipelines
being mapped to the LITTLE cluster.

Table 3 shows detailed performance counters for Q14 (cf.
Fig. 3). Query 14 is one of the queries that profits most from
our DMBS approach. Compared to the operating system’s
ondemand governor, our approach reduces response time by
35% and decreases energy consumption by 45%.

3. RELATED WORK
In light of dimmed or dark silicon, several authors call for

heterogeneous system architectures [2, 7, 8]. In this respect,
the usage of general purpose GPUs for query (co-)processing
already receives a lot of attention. Pirk et al. [24] recently
described a generic strategy for efficient CPU/GPU coop-
eration for query processing by using the GPU to calculate
approximate result sets which are then refined on the CPU.
Karnagel et al. [11] showed how to accelerate stream joins
by outsourcing parts of the algorithm to the GPU. Other
authors show how FPGAs [21] can be used to improve per-
formance and reduce energy consumption in database sys-
tems. Further, on-chip accelerators have been investigated
for database hash table lookups [13].

We focus on single-ISA heterogeneous multi-core architec-
tures and how these can be used to improve performance and
energy efficiency of a database system. Such architectures
include ARM’s big.LITTLE [23] and Intel’s QuickIA [6],
which combines a Xeon server CPU with an energy efficient
Atom CPU in a single system. Previous work on single-
ISA heterogeneous architectures has shown that database
systems need to be adapted in order to optimally use het-
erogeneous processors [3] and that job-to-core mapping in
such a setting is important and challenging [29].

Numerous efforts analyzed the energy efficiency of indi-
vidual database operators and TPC-H queries on single ho-
mogeneous servers [28, 9, 30]. Tsirogiannis et al. [28] stated
that for a database server “the most energy-efficient config-
uration is typically the highest performing one”. On hetero-
geneous platforms, this statement still holds for database
systems that are not adapted to the underlying hardware.
Our DBMS-controlled mapping approach and its evaluation,
however, have shown that this statement no longer holds for
query engines that dynamically map execution jobs to the
core that fits best. In contrast to these proposals we study
how heterogeneous multi-core architectures can be used to
not only improve energy efficiency but also improve perfor-
mance of query processing.

Besides single node servers, significant energy efficiency
improvements have been proposed for database clusters [26,
15, 14, 27]. Schall et al. [26] suggest using a cluster of wimpy
nodes that dynamically powers nodes depending on query
load. Lang et al. [15] propose turning hardware components
off or slowing them down to save energy. Szalay et al. [27]
consider using many blades composed of low-power CPUs
together with solid state disks to increase I/O throughput
while keeping power consumption constant. Lang et al. [14]
further study the heterogeneous shared nothing cluster de-
sign space for energy efficient database clusters. By com-
bining wimpy and brawny nodes in a heterogeneous cluster
setup, better than proportional energy efficiency and per-
formance benefits were achieved. At the macro level, the
authors use a similar approach to determine which work-
load should be executed on which nodes. In contrast to the
this study, this work studies the effects and possibilities of
heterogeneity inside a single node with heterogeneous pro-
cessors and shared memory.
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LITTLE 600MHz big 1600MHz OS ondemand DBMS (our approach)

TPC-H time energy time energy time energy time energy compared to OS ondemand
# [s] [J] [s] [J] [s] [J] [s] [J] time [%] energy [%] EDP [%]

Q1 2.55 7.25 0.77 9.36 1.08 9.59 0.77 9.18 -28.23 -4.23 -31.75
Q2 0.13 0.41 0.08 0.68 0.11 0.72 0.09 0.68 -22.01 -6.25 -22.73
Q3 1.02 2.93 0.48 4.59 0.64 4.86 0.49 4.59 -23.56 -5.56 -27.69
Q4 0.35 1.04 0.23 2.12 0.31 2.3 0.24 1.94 -23.65 -15.69 -34.70
Q5 0.76 2.16 0.52 4.59 0.66 4.77 0.49 3.69 -25.81 -22.64 -42.57
Q6 0.11 0.32 0.05 0.5 0.07 0.54 0.06 0.5 -20.08 -8.33 -20.63
Q7 0.65 1.85 0.43 3.6 0.52 3.69 0.43 3.33 -17.65 -9.76 -25.38
Q8 0.38 1.04 0.13 1.53 0.16 1.44 0.13 1.49 -19.81 3.13 -15.93
Q9 1.84 5.22 1.2 9.9 1.51 10.35 1.26 8.15 -16.44 -21.30 -34.29
Q10 0.59 1.62 0.43 3.24 0.44 3.29 0.46 2.52 2.82 -23.29 -19.92
Q11 0.11 0.27 0.05 0.45 0.07 0.54 0.05 0.45 -30.10 -16.67 -40.48
Q12 0.61 1.67 0.28 2.88 0.37 2.97 0.28 2.79 -23.91 -6.06 -28.91
Q13 1.57 4.41 1.03 7.92 1.34 8.73 1.03 7.83 -23.24 -10.31 -31.06
Q14 0.18 0.5 0.17 1.31 0.22 1.4 0.15 0.77 -34.99 -45.16 -62.50
Q15 0.17 0.5 0.1 0.81 0.13 0.95 0.1 0.81 -22.72 -14.29 -34.41
Q16 1.82 4.18 1.14 5.04 1.07 5.26 1.14 5.04 6.87 -4.11 2.09
Q17 0.48 1.31 0.17 1.98 0.24 2.12 0.17 1.98 -29.47 -6.38 -33.84
Q18 2.27 6.66 1.94 15.26 2.06 15.35 2.13 6.98 3.38 -54.55 -52.98
Q19 0.63 1.94 0.34 3.24 0.34 3.02 0.33 2.45 -4.70 -19.05 -21.26
Q20 0.45 1.35 0.36 2.93 0.49 3.24 0.37 2.97 -24.66 -8.33 -30.78
Q21 0.51 1.4 0.18 2.2 0.21 2.21 0.19 2.2 -12.93 0.00 -9.93
Q22 0.2 0.54 0.09 0.77 0.14 0.99 0.09 0.81 -34.86 -18.18 -47.40

Sum 17.39 48.51 10.18 84.65 12.17 88.29 10.41 71.12 -14.46 -19.45 -30.89

Geo. mean 0.52 1.45 0.28 2.52 0.36 2.67 0.29 2.25 -19.44 -15.73 -31.8

Figure 12: Detailed TPC-H scale factor 2 evaluation results

4. HETEROGENEOUS PROCESSORS FOR
FUTURE DATABASE SYSTEMS

Database machines and appliances are celebrating a re-
vival. Oracle is now shipping its Exadata database appliance
and IBM is offering the DB2 Analytics Accelerator (formerly
Netezza), which performs data filtering on FPGAs. More in-
terestingly, the Oracle labs project RAPID [1] is investigat-
ing how many low-power cores and fixed function accelera-
tors can be integrated in a heterogeneous database appliance
that is optimized for both, high performance and energy ef-
ficiency. Our study of heterogeneous single-ISA multi-core
processors has shown that a cluster of such low-power in-
order cores can offer tremendous performance per die area.
Our results however also suggest, that such processors are no

free lunch for current database systems. Database systems
need to be adapted. Future database machine development
will thus require a tightly coupled hardware/database co-
design process.

5. CONCLUDING REMARKS
Besides GPUs, ASICs and FPGAs, single instruction set

architecture (ISA) heterogeneous multi-core processors are
another way of utilizing otherwise dimmed or dark silicon.
The thorough study of parallelized core database operators
and TPC-H query processing on a heterogeneous single-ISA
multi-core architecture in this work has shown that these
processors are no free lunch for database systems. In or-
der to achieve optimal performance and energy efficiency,
we have shown that heterogeneity needs to be exposed to



the database system, which, because of its knowledge of
the workload, can make better mapping decisions than the
operating system (OS) or a compiler. We have integrated
a heterogeneity-conscious job-to-core mapping approach in
our high-performance main memory database system HyPer
that indeed enables HyPer to get a better mileage while driv-
ing faster compared to fixed and OS-controlled job-to-core
mappings; improving the energy delay product of a TPC-H
power run by 31% and up to over 60% for specific queries.
We would like to stress that this is a significant improvement
as our approach is integrated in a complete query process-
ing system and the whole TPC-H benchmark is evaluated
rather than single operators or micro-benchmarks.

In future work we plan to extend our performance and en-
ergy model to include all relational database operators. Us-
ing the work of Lang et al. [14] as a foundation, we want to
explore energy efficient cluster designs for distributed trans-
action and query processing [19] where not only the cluster
can be composed of heterogeneous nodes but nodes them-
selves can again be composed of heterogeneous processors.
Further, upcoming hardware that allows the simultaneous
usage of heterogeneous single-ISA cores will open the oppor-
tunity for co-processing of queries on heterogeneous cores.
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[19] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and
T. Neumann. ScyPer: Elastic OLAP throughput on
transactional data. In DanaC, 2013.
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