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ABSTRACT
In the last ten years, SSDs achieved astonishing improvements in
capacity per dollar and performance. Today, they are 30× cheaper
than DRAM, and the di�erence is growing. Additionally, they are
more than ten times faster than a few years ago, with a single SSD
providing a throughput of 7 GB/s. Modern servers have enough
PCIe lanes to directly attach multiple NVMe SSDs. That allows us to
linearly scale the storage throughput and diminish the bandwidth
gap between DRAM and SSDs. However, it requires a lot of parallel
I/O requests to exploit multiple directly-attached SSDs, and the
read latency is also very high.

In this paper, we propose to use asynchronous I/O and coroutines
to continuously generate a lot of parallel I/O requests and hide the
I/O latency. As a result, we get optimal throughput with up to 16×
less compute resources than synchronous I/O, and we substantially
�atten the performance cli� when exceeding main memory. We
also show how to integrate coroutines into the code-generating,
analytical DBMS Umbra and describe how we can call pre-compiled
C++-Coroutines from the generated code. Finally, we present our
new asynchronous index-nested-loop join algorithm that improves
Umbra’s end-to-end performance for analytical queries by up to
60%.

Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/L-v-M/async.

1 INTRODUCTION
Traditional caching DBMSs [19] assume that memory is a scarce
resource and that the primary location of the database must be
on the slow disk. But decades of Moore’s law have changed hard-
ware fundamentally. In particular, DRAM became large and af-
fordable enough to store signi�cant fractions of most databases.
The database community reacted by creating in-memory database
systems [13]. Those systems redesigned many components of tra-
ditional caching systems to achieve orders of magnitude higher
performance. For instance, Harizopoulos et al. [17] showed that
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Table 1: Price and performance metrics of DRAM and SSDs.

DRAM SSD
con�g 8 × 64GB 8 × 1.92 TB
cost-bene�t 0.19GB/$ 5.8 GB/$
seq. read 152GB/s (≥ 25 threads) 50GB/s (≥ 4 threads)
rand. read 74GB/s (≥ 72 threads) 48GB/s (≥ 4 threads)
read. latency 181 ns (for 64 bytes) 73 µs (for 4 KiB)

even if they cache the entire database in-memory, the bu�er man-
ager is still the most expensive component of traditional systems.
Since in-memory systems assume that the entire database �ts into
memory, they can substantially improve the performance by re-
moving the bu�er manager entirely.

1.1 In-Memory DBMSs Are Uneconomical
We currently observe two hardware trends that make us question
the viability of pure in-memory systems and reconsider caching
systems [26, 29]. First, the trend of rapidly dropping DRAM prices
slowed down signi�cantly in the last ten years [16]. Considering
that the amount of data we want to analyze is ever-growing, it fol-
lows that the cost of buying su�cient memory capacity increases
disproportionally. Therefore, in-memory systems are increasingly
becoming uneconomical. Even though they provide the best perfor-
mance, their cost/performance ratio can be worse than in caching
systems [27].

1.2 The End of Slow Storage
The second hardware trend is that SSDs (i.e., NAND-based solid-
state drives) have achieved astonishing improvements over the past
years. Today, they are 30 times cheaper than DRAM and well on
their way to catching up with magnetic disks in terms of capacity
per dollar. The performance improvements are even more impres-
sive. While the SATA interface only o�ered a bandwidth of 0.6
GB/s, modern SSDs are directly attached to PCIe using the NVMe
interface and achieve a throughput of 7 GB/s and 1 million IOPS
over 4 PCIe 4.0 lanes [2]. Faster standards are already speci�ed and
will soon o�er up to 30 GB/s of throughput. With modern proces-
sors providing enough PCIe lanes for 16 directly-attached SSDs, the
aggregated storage bandwidth approaches in-memory throughput
while o�ering a much higher capacity at a fraction of the cost [16].
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Figure 1: Bottom-up I/O parallel execution of a query.

In Table 1, we compare the price and performance of DRAM and
SSDs in a server with two AMD EPYC 7713 CPUs with 64 cores
each, 512 GiB of DDR4-3200 RAM, and 8 Samsung PM9A3 PCIe 4.0
NVMe SSD connected to a single socket. It shows that SSDs o�er a
30 times higher capacity per dollar. While DRAM achieves a three
times higher sequential read throughput of 152 GB/s, we also need
at least 25 or six times as many threads as we need for SSDs to
reach the maximum throughput of 50 GB/s. With four threads, on
the other hand, we can only sequentially read 84 GB/s from DRAM.
Additionally, for DRAM, the random read throughput is 50% lower
than the sequential read throughput, and we need many threads
to get there. For instance, with four threads, we can only read 9
GB/s randomly from DRAM, which is six times less than what we
can read from SSDs with the same number of threads. Finally, the
latency of randomly reading from DRAM is 400 times lower than
from SSDs.

Such high storage throughput promises to eliminate the perfor-
mance cli� when exceeding main memory. On the low end, this
allows more economical high-performance data analysis (e.g., on
a laptop), where we can rely on SSDs that are an order of magni-
tude cheaper than DRAM. On the high end, it enables single-node
systems to process up to 100 TBs of data with near in-memory
performance.

1.3 The Challenges of Fast Storage
Reaching this promised storage throughput is challenging for two
reasons. First, it requires a lot of parallel I/O requests [14, 24, 30]. To
achieve the maximum throughput, each SSD requires an I/O depth
(i.e., the number of concurrent I/O requests) of at least 32, which
we additionally have to multiply by the number of devices. Thus,
we need several hundred parallel in-�ight I/O requests, preferably
even more. Current systems cannot generate so many parallel I/O
requests or take too many computing resources to initiate them [11].

Second, the read latency of SSDs is still signi�cantly higher than
of main memory. If the system uses a synchronous interface for
I/O requests, threads spend a substantial amount of time waiting
for their completion. Meanwhile, both the CPU and the SSDs are
underutilized.

1.4 Overview of the Paper
In this paper, we discuss how to combine asynchronous I/O with
coroutines to signi�cantly increase the storage throughput. We also
integrated support for asynchronous I/O into our state-of-the-art,
code-generating analytical DBMS Umbra. Our proposed system
design uses asynchronous I/O to schedule hundreds of parallel I/O
requests and hides I/O latencies with coroutines by suspending
a function on an I/O request. As a result, we achieve higher I/O

throughput with fewer threads. That frees up resources and allows
us to increase the whole system throughput or switch to a more
economical server.

We illustrate our envisioned system design in Figure 1. Our
query processing uses the data-driven, push-based architecture
that pushes tuples bottom-up through the execution plan [28]. The
execution is driven by asynchronous table scans. Downstream op-
erators receive hot in-memory data but might themselves need I/O,
e.g., to �nd join-partners in an index. Until we have loaded the data,
we suspend the pipeline on an I/O request and asynchronously pro-
cess other tuples where the index pages might already be cached.
Consequently, we generate a lot of parallel I/O requests and e�ec-
tively exploit the SSDs.

The rest of the paper is structured as follows. Section 2 introduces
the necessary background. In Section 3, we examine the bene�ts of
asynchronous I/O and coroutines for query processing in a set of
micro-benchmarks. Then, in Section 4, we discuss how to generate
coroutines in a code-generating system and how those Codegen-
Coroutines can call C++-Coroutines. Section 5 evaluates the end-
to-end query performance of coroutine-based, asynchronous index-
nested-loop joins in our compiling systemUmbra. Finally, we review
related work and summarize our contributions.

2 BACKGROUND
Database system design is a balancing act between storage, memory,
and compute. In the last decade, we observed that SSDs improved
faster than DRAM in terms of capacity per dollar and performance.
Therefore, we argue that high-performance DBMSs should change
how they use SSDs to become more economical.

2.1 Modern Caching DBMSs
LeanStore [26] is a high-performance bu�er manager which uses
pointer swizzling as a decentralized, low-overhead technique for
address translation. The database system Umbra [29] builds on
LeanStore and extends it with variable-size pages to simplify the
implementation of bu�er-managed data structures. Umbra’s per-
formance is comparable to the in-memory system Hyper [21] if the
working set �ts into memory and degrades gracefully for larger data
sets. But Umbra uses synchronous I/O, which has undesired conse-
quences and cannot fully exploit multiple, directly attached modern
NVMe SSDs. Speci�cally, it blocks threads, restricts the amount of
in-�ight I/O operations, and demands high CPU utilization [16].

2.2 Asynchronous I/O to the Rescue
Asynchronous I/O solves our problems with synchronous I/O. It
does not block threads, a single thread can schedule many I/O
operations at once, and it reduces the CPU load [16].

In an asynchronous I/O interface, a worker thread submits a
request for an I/O operation but does not wait for its completion.
Instead, it continues to do other useful work and occasionally polls
for a completion event. Once it receives this event, it can resume
the operation that issued the I/O request.

Linux recently introduced a new interface for asynchronous I/O
called io_uring [4]. It promises to be easier to use and provide
better and more predictable performance than its predecessor aio.
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2.3 Coroutines
Asynchronous I/O requires the ability to suspend and resume a func-
tion on an I/O request. Until recently, it was not easy to implement
this in C++, which is the implementation language of Umbra. One ap-
proach was to transform functions into state machines [23], which
decreases readability and, in turn, maintainability. Even worse, it
requires a rewrite of large parts of the codebase.

Fortunately, with C++20, a simpler approach based on coroutines
became available. By using special library types [6] and adding a
keyword to a function, we can compile it into a coroutine which
can suspend execution to be resumed later. That signi�cantly de-
creases the e�ort to adapt an existing synchronous codebase to an
asynchronous I/O interface.

2.4 Internal Parallelism of SSDs
We need asynchronous I/O to reach the high throughput of modern
NVMe SSDs. Internally, SSDs contain dozens or even hundreds
of �ash chips that manage a subset of the storage cells and can
be accessed in parallel [14, 24]. The SSD controller transparently
distributes writes across the chips at page granularity. Therefore,
when reading several pages simultaneously, we exploit multiple
�ash chips and achieve higher bandwidth. Asynchronous I/O en-
ables us to schedule hundreds of parallel I/O requests and continu-
ously provide work for all �ash chips. Furthermore, asynchronous
I/O coupled with direct I/O reduces the CPU load which is required
to exploit multiple SSDs connected to a single machine [16].

3 ASYNCHRONOUS I/O FOR QUERY
PROCESSING

Throughput and latency are two key metrics to measure the per-
formance of storage. As shown in Figure 2, we can linearly scale
the throughput until we run out of PCIe lanes by buying multiple
SSDs and directly attaching them to PCIe using the NVMe interface.
However, to exploit them, we also need to scale the amount of
parallel I/O requests. But the read-latency of SSDs is 400× higher
than that of DRAM, and, unfortunately, we cannot reduce this gap.

Asynchronous I/O and coroutines enable us to maximize the
performance when reading from SSDs:

• Asynchronous I/O facilitates the scheduling of hundreds of
parallel I/O requests to reach high throughput.

• Coroutines allow us to hide the latency by suspending a
function on an I/O request and resuming another.

In this section, we micro-benchmark if asynchronous I/O and
coroutines improve the performance of analytical data processing
on SSDs. Our results show that asynchronous I/O considerably
�attens the performance cli� when exceeding main memory. Ad-
ditionally, it reduces the compute requirements to reach full SSD
speed by about 4×.

3.1 Sequential I/O for Table Scans
We start with the simple case of sequential I/O for table scans. The
SSD controller optimizes for this access pattern by transparently
striping larger �les across the �ash chips at page granularity [24].
Consequently, large sequential scans take full advantage of the

SSDs with high in-
ternal parallelismCPU Parallel, high-

bandwidth PCIe lanes

Figure 2: The storage architecture of modern SSDs.

internal parallelism o�ered by SSDs, and even synchronous reads
should achieve high throughput.

We want to examine the performance of sequential reads on mul-
tiple directly-attached SSDs to check if there are bene�ts of asyn-
chronous I/O over synchronous I/O. Therefore, we implemented
query 1 of the TPC-H benchmark [10] by hand and used C++-
Coroutines and io_uring for asynchronous I/O. Our implementation
is similar to the hand-written one described by Boncz et al. [7].

Query 1 performs a table scan of the lineitem relation and applies
a �lter that removes less than two percent of the tuples. It then
groups the remaining tuples into four groups and computes several
simple aggregates on top of them.

FILE-ALT MOUSE-POINTER MOUSE-POINTER FILE-ALT MOUSE-POINTER FILE-ALT

Swips
Memory

SAVESAVE
SAVE

Storage

SAVESAVE
SAVE

Figure 3: Swips directly address in-memory data (MOUSE-POINTER) or refer-
ence data paged out to storage (FILE-ALT).

Since we are interested in the performance impact of having to
read from storage, we implemented a static bu�er manager that
allows us to �x the fraction of cached pages before executing the
benchmark. Similar to LeanStore [26] it consists of a vector of
swips with one swip for each page of the lineitem relation. As
shown in Figure 3, a swip is either a virtual memory address or
a page identi�er. We encode a swip as a 64-bit integer containing
either a virtual memory address (i.e., a 48-bit pointer) or a 63-bit
page identi�er. Then we can use the topmost bit to discriminate
between the two states (i.e., pointer tagging). If the swip contains a
virtual memory address, the referenced page is already cached and
directly accessible by dereferencing the address. Otherwise, we use
the page identi�er to locate and load the page from storage. Before
a benchmark run, we decide how much data should be already
cached and populate the bu�er manager accordingly. For example,
if we want 60% of the data cached, we choose 60% of the swips
according to a uniform random distribution, load the referenced
pages into memory, and change the swips to contain pointers to
the cached pages.

For synchronous I/O, the number of threads directly determines
the amount of parallel I/O requests. Therefore, we also parallelize
and vary the parallelism in our micro benchmarks. For that, we use
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Figure 4: Threads fetch multiple morsels for table scans and
start one coroutine per morsel.

morsel-driven parallelism with one worker thread per core, which
scales well to many core execution [25]. During processing, threads
repeatedly grab a morsel consisting of a few consecutive swips
from the central work queue, �lter the tuples on the referenced
pages, and aggregate them in a thread-local hash table. After all
pages are processed, a �nal merge step combines the intermediate
thread-local results into a �nal result.

For the synchronous I/O version, the thread iterates over the
morsel’s swips. If the referenced page is not cached, the thread
issues a blocking pread() call to load it and then processes its
tuples. While waiting for the data, the thread is idle.

For the asynchronous I/O version, we use a coroutine-per-morsel
approach, as shown in Figure 4. We con�gure the maximum I/O
depth per thread, which corresponds to the number of morsels each
thread picks at once to execute. The example in the �gure uses
an I/O depth of three, which means that each thread grabs three
morsels from the central work queue and starts three coroutines.

If a coroutine encounters a page identi�er FILE-ALT within the current
morsel, it issues an asynchronous, non-blocking read operation and
cooperatively suspends itself. For cached, in-memory pages MOUSE-POINTER, the
coroutine synchronously processes the tuples on them. As long
as there are outstanding I/O operations and no ready coroutines,
the thread polls the thread-local io_uring for newly completed I/O
requests and resumes the coroutines that issued them. Only once
the entire batch of morsels is �nished does the thread grab the next
batch from the work queue.

3.1.1 Higher Throughput with Less Compute. In the �rst micro-
benchmark, we examine the e�ect of coroutines and asynchronous
I/O on the throughput per thread while processing TPC-H Q1. With
synchronous I/O, one thread can have at most one outstanding I/O
request. Asynchronous I/O, on the other hand, allows one thread to
issuemany I/O requests simultaneously. But since I/O still consumes
a lot of CPU cycles, one thread is not enough to saturate the I/O
bandwidth [16].

Before starting a benchmark run, we con�gure the static bu�er
manager to use a �xed page size of 64 KiB and ensure that a ran-
dom subset of 60% of the lineitem relation’s pages are cached. For
comparison, we vary the number of threads and the I/O depth per
thread. While synchronous I/O only supports an I/O depth per
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Figure 5: Throughput per thread of processing TPC-H Q1.
Page size of 64 KiB, 60% cached.

thread of one, we test di�erent asynchronous I/O versions with I/O
depths per thread of up to 128.

We show the results of the micro-benchmark in Figure 5. It
visualizes the throughput per thread (y-axis) of processing TPC-H
Q1 for varying numbers of threads (x-axis) and di�erent types of I/O
(color). We used the hardware described in Table 1 with a maximum
I/O throughput of 50 GB/s. But note that we are measuring the
throughput of processing data from the lineitem relation for TPC-
H Q1. Since 60% of it is already cached, we can achieve higher
throughput than 50 GB/s.

For up to 64 threads, asynchronous I/O considerably outperforms
synchronous I/O. For a single thread, asynchronous I/O with an
I/O depth of 64 per thread achieves an almost four times higher
throughput than synchronous I/O. Additionally, we see that an
I/O depth of 64 per thread is required to get the best throughput
with asynchronous I/O. Going higher does not further improve
the throughput. Finally, starting with 64 threads, the di�erence
between synchronous and asynchronous I/O diminishes. That is ex-
pected behavior as a higher number of threads automatically leads
to a higher number of in-�ight I/O requests. The result is higher
throughput because of better utilization of the internal parallelism
of the SSDs.

In summary, asynchronous I/O allows us to reach higher through-
put than synchronous I/O with 1/4 the compute resources. For ex-
ample, with four threads and an I/O depth per thread of 64, we
achieve a total throughput of 27.7 GB/s which is more than the
22.7 GB/s we get with 16 threads and synchronous I/O. Similarly,
with 16 threads and an I/O depth per thread of 128, we reach a total
throughput of 91.2 GB/s which is more than the 68.9 GB/s we get
with 64 threads and synchronous I/O. This frees up resources for
in-memory workloads, or allows downsizing the compute resources
for more economical operation.

3.1.2 Graceful Degradation. In the second micro-benchmark, we
investigate the performance impact when the working set’s size
exceeds the memory capacity and check if asynchronous I/O and
coroutines help soften it.

In Figure 6, we measure the throughput of processing TPC-H Q1
(x-axis) for di�erent fractions of pages cached in main memory (y-
axis). We compare synchronous I/O with asynchronous I/O having
an I/O depth per thread of 128, which achieved the best performance
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in this benchmark. Again we use a page size of 64 KiB, but this
time �x the number of threads to eight. Furthermore, we add an
auxiliary line to mark the bandwidth achieved with asynchronous
I/O with an empty cache.

We see that eight threads are su�cient to achieve the full I/O
bandwidth of 47 GB/s as long as we use asynchronous I/O. The I/O
depth of synchronous I/O is too low, resulting in �ve times worse
throughput. As we increase the fraction of pages cached in mem-
ory, the throughputs for both synchronous and asynchronous I/O
only improve marginally. But even with 90% cached, the through-
put of synchronous I/O is still 15 GB/s below the throughput of
asynchronous I/O when nothing is cached.

For Figure 7, we repeat the experiment with 32 threads and add
one more auxiliary line showing the theoretical optimal through-
put based on the SSD and memory bandwidths. As expected, the
increased number of threads improves the throughput for synchro-
nous I/O. Still, asynchronous I/O outperforms synchronous I/O and
gets very close to the optimal theoretical throughput. Interestingly,
while eight threads were su�cient to reach the available SSD band-
width, we needed 32 threads on our 64 core socket to saturate the
DRAM bandwidth of 150 GB/s. That is in line with the numbers
shown in Table 1.

To sum up, asynchronous I/O helps tremendously to reduce the
impact of exceeding main memory. Especially for workloads that

almost �t into main memory, e.g., with 80 % cached, synchronous
I/O loses more than 50 % of the in-memory performance. In contrast,
asynchronous I/O retains about 75 % of this performance.

3.2 Random I/O for Index Lookups
In the last section, we discussed that even sequential workloads
have signi�cant random access patterns, such that asynchronous
I/O is very bene�cial. We now turn to random reads in index struc-
tures, where the observed e�ects should be even more pronounced.

For SSDs, the throughput of random and sequential I/O is almost
identical (c.f. Table 1). However, the latency penalty when randomly
reading from SSDs is high and limits workloads that perform a lot
of random I/O, such as index lookups. Therefore, we conducted a
second set of micro-benchmarks to evaluate whether asynchronous
I/O and especially coroutines improve the performance of queries
with random I/O. For that, we implemented query 14 of the TPC-H
benchmark by hand in C++ and again used C++-Coroutines and
io_uring for asynchronous I/O.

Query 14 performs a very selective �lter on the lineitem relation
and joins the remaining tuples with the part relation on the foreign-
key column. Finally, it aggregates the tuples using a single group.

For the experiment, we evaluate the join using the index-nested-
loop algorithm. That is the same strategy that the Hyper system
uses. Building the hash index for the part relation is done upfront
before starting the benchmark. The hash index is implemented like
the hash table in Leis et al. [25]. Each entry in the index maps the
join key to a pair consisting of a swip and a tuple o�set. Thus, every
lookup in the index yields the exact location of the corresponding
tuple. Additionally, while building the index, we compute how
often each page of the part relation is going to be read during query
execution. For a benchmark run, we use this knowledge to �x the
fraction of accesses that should be a cache hit and load the required
pages into memory beforehand. To isolate the e�ects of random I/O,
we load the entire lineitem relation into memory before executing
the micro-benchmarks as it is read sequentially.

We again parallelize the execution with morsel-driven paral-
lelism and use the coroutine-per-morsel approach. Threads repeat-
edly grab a batch of morsels of in-memory lineitem tuples from the
central work queue, �lter them according to the predicate, and look
up the join partners in the hash index. If the referenced part page is
not cached, the thread loads it from storage using synchronous or
asynchronous I/O with coroutines, respectively. For the latter, the
coroutine responsible for the morsel suspends itself after issuing
the I/O request, and the thread switches to another coroutine from
the batch as already described above.

For the experiment, we execute query 14, �x the page size to
4 KiB, and prepare the static bu�er manager to serve 60% of the
lookups in the part relation index from the cache. Larger page
sizes than 4 KiB signi�cantly increased the response times but
did not change the relative di�erences between synchronous and
asynchronous I/O.

We display the results of the micro-benchmark in Figure 8. It
shows that asynchronous I/O and coroutines consistently outper-
form synchronous I/O for workloads consisting of random reads.
With a single thread, asynchronous I/Owith an I/O depth per thread
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of 512 achieves an almost 15 times higher throughput than synchro-
nous I/O. Even with 32 threads, the throughput is still more than
twice as high as with synchronous I/O. But the results are even
more impressive when we compare the absolute numbers. With 128
threads, synchronous I/O reaches its maximum of 1,607,774 lookups
per second. For asynchronous I/O, we only need four threads to
surpass that number with 1,854,512 lookups per second. That means
better performance with 16 times fewer threads.

In conclusion, the results show that we need to use asynchronous
I/O and coroutines if we want to exploit the performance of modern
NVMe SSDs. Furthermore, asynchronous I/O frees up resources
which enables us to complete more work with the same hardware
or the same work with much cheaper hardware.

4 COROUTINES IN A CODE-GENERATING
DBMS

In the last section, we have demonstrated that asynchronous I/O
has enormous bene�ts for query processing. It is signi�cantly more
e�cient than synchronous I/O and enables graceful performance
degradation when exceeding main memory. But to use it, we need
coroutines and an asynchronous execution model, which is chal-
lenging to integrate into a system design. Interpreting query en-
gines should be able to use coroutines straightforwardly. But those
engines have the inherent interpretation overhead. Code generating
systems are more e�cient but require higher engineering e�ort to
support coroutines if the compilation target does not o�er them
(e.g., C code or LLVM IR). In this section, we thus develop a novel
system to generate asynchronous code and show how to integrate
it into a state-of-the-art code-generating DBMS.

4.1 C++-Coroutines
A coroutine is a function that can suspend execution at well-de�ned
suspension points to be resumed later. This way, we can write se-
quential code that executes asynchronously (e.g., to handle asyn-
chronous I/O) [1]. Support for coroutines is one of the language
features added to C++20. Since our database system, Umbra, is writ-
ten in C++, we can use them for asynchronous I/O. However, Umbra
is a code-generating system, and the code it generates to evaluate a
query is not in C++. Instead, our code generator translates a query
plan into a custom intermediate representation, Umbra IR, and we

have several compilation backends that lower Umbra IR into exe-
cutable code [22]. For example, the �ying start backend emits x86
machine code, and the LLVM backend transforms Umbra IR into
LLVM IR for compilation with LLVM [28]. Nevertheless, we have a
proxy system in Umbra that makes it possible to call pre-compiled
C++ code, even coroutines, from the generated code of a query.

4.2 Codegen-Coroutines
In this section, we present Codegen-Coroutines. When we generate
code for a coroutine in Umbra, our compilation backends translate
this code into a state machine similar to how a C++-Compiler
compiles C++-Coroutines. First, we explain how this translation
works and how we can await C++-Coroutines from a Codegen-
Coroutine. Finally, we discuss how we use C++-Coroutines for
asynchronous I/O.

A coroutine is a generalization of a function. Next to the usual
call and return operations, coroutines additionally provide suspend
and resume [5]. Suspending a coroutine means stopping its execu-
tion at a well-de�ned suspension point and transferring control
back to the caller or resumer. The activation frame, which holds
the coroutine’s state (e.g., parameters and local variables), is not
destroyed. As a result, all objects in scope at the suspension point
remain alive. When we resume a suspended coroutine, its activation
frame becomes active again. In this case, the coroutine resumes
execution immediately after the last suspension point.

Listing 1: A simple C++-Coroutine.
task<int> read64(int numInts) {

int bytesRead = co_await read8(numInts * 8);
co_return bytesRead / 8;

}

In Listing 1, we show a C++ function that uses the co_await
and co_return operators. By de�nition, the C++-Compiler com-
piles such a function into a coroutine. Each usage of the co_await
operator marks a potential suspension point. In this example, we
show a coroutine that reads integers by awaiting another corou-
tine, read8(), that reads several bytes. If the awaited coroutine
(read8()) does not suspend and �nishes synchronously, the await-
ing coroutine (read64()) does not suspend as well. Otherwise, both
coroutines suspend, and the awaiting coroutine becomes the con-
tinuation of the awaited coroutine. When the awaited coroutine is
later resumed and runs to completion, it will automatically resume
the awaiting coroutine. Note that the coroutine returns an object of
type task<int>, which has special meaning for the compiler and
allows library writers to customize the behavior of the coroutine.

For illustration, let’s say we want to generate code for a Codegen-
Coroutine that calls the C++-Coroutine of Listing 1 and returns a
computed value. It should perform the same computation as the
C++-Coroutine shown in Listing 2.

As mentioned above, our compilation backends do not generate
C++ code but instead transform a Codegen-Coroutine into a state
machine. To ease the explanation, we show the code emitted by our
C compilation backend, which is only used internally for debugging.

For each Codegen-Coroutine, our C backend generates a (1)
coroutine state, a (2) resume function, and a (3) ramp function.
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Listing 2: A C++-Coroutine similar to the Codegen-
Coroutine we want to generate.
task<int> readTuple(int numTuples) {
int c = co_await read64(numTuples);
int d = co_await read8(numTuples);
co_return c + d;

}

The coroutine state is the activation frame of the coroutine. We
separate it into two types (cf. Listing 3). All Codegen-Coroutines use
an object of the general type CoroState to hold internal variables
required tomanage the execution of the coroutine. ReadTupleState
is specialized for the speci�c coroutine we want to generate and
provides storage for parameters and local variables whose values
we must preserve across suspension points.

Listing 3: Coroutine states are split into a general and a
specialized type.
struct CoroState;
typedef CoroState* (*ResumeFunc) (CoroState*);

// General type
struct CoroState {
ResumeFunc resumeFunc;
int currentState;
CoroState* continuation;
int returnValue;

};

// Specialized type
struct ReadTupleState {
CoroState coroState;
int numTuples, c;
void* coroHandle;

}

Before we show the code for the generated resume and ramp
functions of our Codegen-Coroutine, we must discuss how we can
await C++-Coroutines from a Codegen-Coroutine. We achieve this
by wrapping the C++-Coroutine with two separate functions we
write by hand and ship with the system. The �rst, shown in List-
ing 4, starts the execution of the C++-Coroutine by calling the
awaitSuspend() method of the task object. This method returns
the information if the C++-Coroutine has �nished synchronously
with a handle to the C++-Coroutine. Note that we don’t delete the
activation frame yet, even if it �nished synchronously, as we still
need to extract the result of the coroutine later in the second func-
tion. Therefore, we call the release method of the task object to
release its ownership of the activation frame. If the C++-Coroutine
did not �nish synchronously, the awaitSuspend()method sets the
Codegen-Coroutine to be the continuation of the C++-Coroutine.

The second function to wrap a C++-Coroutine is shown in List-
ing 5. It is called after the C++-Coroutine has run to completion
and uses the coroutine handle obtained earlier to extract its result

Listing 4: The �rst wrapper function starts the C++-
Coroutine.
struct Result {

bool shouldSuspend;
void* coroHandle;

};

Result proxyRead8(int numInts,
const CoroState* continuation) {

task<int> t = read8(numInts);
bool shouldSuspend = t.awaitSuspend(continuation);
void* coroHandle = t.release().address();
return {shouldSuspend, coroHandle};

}

(the value returned by co_return). It does this by constructing
a new task object that takes ownership of the existing coroutine
handle. Furthermore, the destructor of this task object also deletes
the activation frame associated with the coroutine handle.

Listing 5: The second wrapper function extracts the result
of the C++-Coroutine and deletes its activation frame.
int extractRead8Result(void* coroHandle) {

return task<int>{coroHandle}.result();
}

Next, we show the generated resume function in Listing 6. This
function contains the actual state machine and represents the body
of our Codegen-Coroutine. It uses the currentStatemember of its
coroutine state to remember the last suspension point and, thereby,
the location in the code where it should resume execution.

The resume function uses the two wrapper functions described
above to call the C++-Coroutines. In the initial state 0, it calls
the �rst coroutine proxyRead64() to start the execution and set
itself as the continuation of the C++-Coroutine. Then, it saves the
returned coroutine handle in its state to be able to access it across
suspension.

If the C++-Coroutine did not �nish synchronously, the Codegen-
Coroutine prepares itself for suspension by updating its currentState
and returns a NULL pointer to signal to its caller or resumer that
it is suspended. Otherwise, the Codegen-Coroutine continues and
extracts the result of the C++-Coroutine by calling the second wrap-
per function. When the Codegen-Coroutine runs to completion, it
returns the value of its coroutine state’s continuation member.

This simple example also illustrates the inherent overhead of
using coroutines. Calling a coroutine for a cheap function has high
overhead. We even have to allocate the coroutine state on the heap,
which further increases the overhead. But since all coroutine states
of a speci�c coroutine have the same size, we can write an e�cient
allocator for that. For expensive functions that perform I/O, the
overhead of calling a coroutine is more than compensated for by
the increased I/O parallelism.

Finally, Listing 7 shows the ramp function, which initializes the
coroutine state and transfers control to the resume function. It is
the entry point of our Codegen-Coroutine and is called only once.
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Listing 6: The generated resume function of our Codegen-
Coroutine.
CoroState* resumeReadTuple(ReadTupleState* state) {
switch (state->coroState.currentState) {
case 0: {
// co_await read64
Result r = proxyRead64(state->numTuples,

state->coroState);
state->coroHandle = r.coroHandle;
if (r.shouldSuspend) {

state->coroState.currentState = 1;
return NULL;

}
} // fall through
case 1: {
// resume from read64
state->c = extractRead64Result(state->coroHandle);
// co_await read8
Result r = proxyRead8(state->numTuples,

state->coroState);
state->coroHandle = r.coroHandle;
if (r.shouldSuspend) {

state->coroState.currentState = 2;
return NULL;

}
} // fall through
case 2: {
// resume from read8
int d = extractRead8Result(state->coroHandle);
state->coroState.returnValue = state->c + d;
// finished execution, resume the continuation
return state->coroState.continuation;

}
}
}

The resume function, on the other hand, is called as often as needed
to resume a suspended coroutine after a suspension point until the
coroutine runs to completion.

Listing 7: The generated ramp function of our Codegen-
Coroutine.
CoroState* rampReadTuple(ReadTupleState* state,

CoroState* continuation,
int numTuples) {

state->coroState.resumeFunc = &resumeReadTuple;
state->coroState.currentState = 0;
state->coroState.continuation = continuation;
state->numTuples = numTuples;
return resumeReadTuple(state);

}

We now have all the building blocks required to generate code for
coroutines and call pre-compiled C++-Coroutines from Codegen-
Coroutines. This allows us to extensively use C++-Coroutines in

Umbra and, e.g., build an asynchronous B+-tree index in C++ that
we can easily use from the generated code.

4.3 Asynchronous I/O
An asynchronous interface such as io_uring o�ers two fundamental
operations: submitting a request and polling for the completion
of said request. Listing 8 shows the C++-Coroutine we use to sub-
mit an asynchronous read request. The IOUringReadAwaiter{} is
a so-called awaiter that contains code to submit the I/O request
to io_uring, store a handle to the coroutine with the request (see
std::coroutine_handle<Promise>::address), and then suspend
the coroutine. We provide another function to poll for the com-
pletion of the requests. If there are any completed requests, we
extract the coroutine handles from them and resume the corre-
sponding coroutines from their last suspension points by calling
the resume() method of the coroutine handle.

Listing 8: The C++-Coroutine we use to submit an asyn-
chronous read request.
task<bool> doAsyncRead(IOUring& ring, int fd,

void* buf, size_t count,
off_t offset) {

while (count) {
auto res = co_await

IOUringReadAwaiter{ring, fd, buf, count,
offset};

if (res < 1) {
co_return false;

}
count -= res;
buf = static_cast<char*>(buf) + res;
offset += res;

}
co_return true;

}

In the next section, we provide more details on how we use the
building blocks presented here to enable asynchronous I/O. Thanks
to the building blocks, we can realize an asynchronous execution
model in our code-generating DBMS Umbra. And since we reuse
our existing machinery for calling pre-compiled C++ code, calling a
C++-Coroutine is just as simple as calling a normal C++ function.

5 ASYNCHRONOUS I/O AND COROUTINES IN
UMBRA

In Section 3, we discovered that asynchronous I/O with corou-
tines signi�cantly and consistently outperforms synchronous I/O
for random reads. In this section, our goal is to reproduce those
results in Umbra by integrating asynchronous I/O and Codegen-
Coroutines to improve the end-to-end performance of analytical
queries. Following the insights of Section 3, we focused on random
I/O and integrated asynchronous I/O into our index-nested-loop
join algorithm.

Query 5 of the TPC-H benchmark is a good example of a query
for which Umbra’s optimizer chooses an index-nested-loop join
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algorithm. It joins a small intermediate result with the 130 times
larger lineitem relation and the join key is a pre�x of the lineitem
relation’s primary key. Since Umbra maintains a B-Tree index for
primary keys, we can use the index-nested-loop algorithm to e�-
ciently evaluate the join. The bene�t of doing so is that we don’t
need to read the entire lineitem relation but only the pages rele-
vant for the join. As the access pattern is inherently random, we
expect that coroutines, with their ability to hide the I/O latency and
maximize the I/O parallelism, should give a noticeable performance
boost to this evaluation strategy.

Changing the code to use coroutines and asynchronous I/O was
straightforward. First, we needed to adapt the C++ code for the
B-Tree and page-lookup to use C++-Coroutines. For that, we had to
change the return types from T to task<T> of all functions on the
path down to the ones that read from storage. Additionally, we had
to use the co_await operator every time we called such a function
to compile the caller into a C++-Coroutine. Finally, we changed Um-
bra’s code generator to compile the generated functions responsible
for the asynchronous lookups into Codegen-Coroutines.

Our �rst attempt was to start one Codegen-Coroutine for each
tuple of the probe side to maximize the I/O parallelism. When the
thread-local io_uring instance became full, the thread started to
poll the io_uring for completion events and resumed the suspended
coroutines accordingly. However, it turned out that the overhead
of allocating a coroutine state, materializing the tuple in it, and
checking if the io_uring still has free capacity is too high for only
a single tuple. Instead, we experimentally veri�ed that we must
batch at least 128 tuples in a Codegen-Coroutine to amortize the
overhead of initializing and starting it.

The second problem we encountered was that when we have
a lot of concurrent I/O requests, it often happened that multiple
coroutines tried to load the same page simultaneously. For correct-
ness reasons, we cannot have multiple copies of the same page
cached in the bu�er manager. Also, it is obviously more e�cient
to schedule the I/O request just once. To avoid this, we mark a
swip as locked in Umbra while loading the corresponding page
into memory and use our parking lot infrastructure [8] to let other
threads wait for the in-�ight I/O operation. With coroutines, it is
necessary to adapt the parking lot infrastructure since the condition
variable used internally would block not only the coroutine but
also the entire thread. We have left those adaptions for future work.
Instead, we queue those coroutines in a round-robin scheduler and
use a restarting/retrying mechanism to prevent the thread from
blocking.

5.1 Evaluation
The micro-benchmarks presented in Section 3 assume an idealized
system with a simplistic bu�ering strategy. We now examine how
the �ndings generalize to the challenges of a real system with a
complex bu�er manager, MVCC checks and full SQL support. For
the evaluation, we use TPC-H queries 4, 5, and 10, for which Um-
bra’s optimizer picks our new asynchronous index-nested-loop join
algorithm described above. The TPC-H database has a scale factor
of 100, corresponding to 100 GB of raw data. We conducted all mea-
surements on a server with two AMD EPYC 7713 CPUs with 128
cores, 512 GiB of DDR4-3200 RAM, and 8 Samsung PM9A3 PCIe 4.0
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Figure 9: Systems comparison on the TPC-H benchmark.

NVMe SSD connected to a single socket. During the benchmarks,
we pinned the process to the same socket to which the SSDs are
connected. However, we did not see signi�cantly di�erent perfor-
mance for cross-socket PCIe reads. The code was compiled using
GCC 11.2.

5.1.1 Systems Comparison. Before we look at the performance of
our new asynchronous index-nested-loop join, we want to under-
stand how fast Umbra executes TPC-H queries 4, 5, and 10 compared
to other state-of-the-art analytical DBMSs. The signi�cance of this
comparison is that it is much harder to improve the performance of
a very fast system than that of a slow system. We compare Umbra
with ClickHouse v22.6.1.1985-stable [9] and DuckDB v0.4.0 [33].
Since ClickHouse does not support external index-nested-loop joins,
it only makes sense to compare the raw processing performance of
the di�erent systems. Therefore, we give each system the full 512
GiB of DRAM and use a schema without any indexes so that the
systems have to perform full table scans. We con�gure the systems
to use 64 threads on our 64-core socket. Other than that, we use the
default con�guration. Additionally, we preload the data into mem-
ory and report the median of 10 runs. Since ClickHouse’s query
optimizer does not perform join-reordering, we write the queries
to use the join order picked by Umbra’s optimizer.

We show the results in Figure 9. They show that Umbra consid-
erably outperforms the other systems and is 15, 3.5, and 5.35 times
faster than the next best system.

5.1.2 Asynchronous Index-Nested-Loop Joins. We now examine
the asynchronous index-nested-loop joins described earlier in the
section. For the evaluation, we adjusted Umbra to use 16 threads, an
I/O depth per thread of 256, and to batch 128 tuples per coroutine.
Furthermore, we con�gured Umbra to use direct I/O and varied the
size of the bu�er manager in the benchmark runs. Since we used a
TPC-H scale factor of 100, 20% cached, e.g., translates to a bu�er
manager size of 20 GB.

We visualize the results of our experiments in Figure 10. The re-
sults show that asynchronous index-nested-loop joins considerably
improve the performance of the three queries. For a bu�er man-
ager size of 20 GB, asynchronous I/O improves the performance of
query 4 by almost 60%. Even though Q5 and Q10 also execute other
operators, asynchronous index-nested-loop joins still improve the
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Figure 10: Asynchronous index-nested-loop joins on the TPC-
H benchmark.

performance by at least 45%. With more data cached, the improve-
ments unsurprisingly become smaller. But with 80% cached, Q4
is still almost 25% faster than the version with the synchronous
index-nested-loop join.

When we increase the number of threads to 64 or 128, the per-
formance di�erence between synchronous and asynchronous I/O
disappears. That is in line with our insights from Section 3 that
an increasing number of threads automatically leads to higher I/O
parallelism and better throughput.

5.1.3 Conclusion. Although we have only added support for asyn-
chronous I/O to our index-nested-loop join algorithm, we can al-
ready see considerable performance improvements for out-of-core
joins. In future work, we also want to add asynchronous I/O to
our table scan operators to realize our vision of a system based
on asynchronous execution that can exploit the performance of
multiple NVMe SSDs.

6 RELATEDWORK
Many traditional DBMSs use the pull-based iterator model [15],
which is not well suited for asynchronous execution. Newer cloud-
native systems, e.g., Snow�ake [12] or Redshift [3], instead use the
push-based execution model and can immediately pass tuples to
the next operator when they are read from the storage or network.
Push-based systems are well suited for asynchronous execution.
However, we are unfortunately not aware of any publications di-
rectly discussing the bene�ts of asynchronous I/O for query pro-
cessing.

There is already a plethora of research from the �eld of in-
memory systems showing that one can use C++-Coroutines to
hide the CPU-cache miss latency caused by random reads when
accessing memory regions that exceed the size of the last level
cache [20, 31]. That is possible because switching between corou-
tines takes less time than reading from memory. Additionally, the
authors praise the simplicity of converting existing synchronous
functions into coroutines and experimentally con�rm that the per-
formance of C++-Coroutines is as good as the performance of other
approaches for instruction stream interleaving.

In [32], Psaropoulos et al. explore the usage of coroutines to
hide the higher-than-DRAM latency of accessing non-volatile mem-
ory. They conclude that interleaving with coroutines narrows the

performance gap between NVM and DRAM for latency-bound op-
erations as long as there is enough independent work to execute in
the meantime.

He et al. propose a coroutine-to-transaction model in [18]. In
this model, they start one coroutine for each transaction. Upon
a possible CPU-cache miss, they switch the execution from one
transaction to another. As long as there are multiple concurrent
transactions, they can �nd enough independent work to hide a
CPU-cache miss. This design allows them to avoid code changes as
much as possible while getting the bene�ts of memory prefetching.
Although not discussed in their paper, this design should be easily
adaptable to asynchronously read from storage.

7 SUMMARY AND FUTUREWORK
In the last ten years, SSDs made astonishing improvements in ca-
pacity per dollar and performance. We are convinced that they are
now the ideal storage technology for scan-oriented OLAP database
systems. However, we need a lot of parallel I/O requests to exploit
them, and the latency of reading from them is still very high.

In this paper, we proposed to use asynchronous I/O and corou-
tines to generate a lot of parallel I/O requests and hide the I/O
latency. First, we showed that this enables us to get signi�cantly
higher throughput with less compute resources. Additionally, we
found that this substantially �attens the performance cli� when
exceeding main memory. Then, we discussed how to integrate sup-
port for coroutines into a code-generating DBMS and showed how
we can call C++-Coroutines from Codegen-Coroutines. Finally, we
presented our implementation of coroutines for asynchronous I/O
in Umbra and measured performance improvements of up to 60%
for our new asynchronous index-nested-loop joins.

For future work, we plan to signi�cantly extend Umbra’s support
of asynchronous I/O. As previously mentioned, we plan to add
support for asynchronous locks. Furthermore, we want to make
our task-scheduler coroutine aware to implement a coroutine-per-
morsel approach. Finally, we want to add support for asynchronous
I/O to all our scan operators.
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