
High-Performance Geospatial Analytics in HyPerSpace

Varun Pandey Andreas Kipf Dimitri Vorona
Tobias Mühlbauer Thomas Neumann Alfons Kemper

Technische Universität München
{pandey, kipf, vorona, muehlbau, neumann, kemper}@in.tum.de

ABSTRACT
In the past few years, massive amounts of location-based
data has been captured. Numerous datasets containing
user location information are readily available to the pub-
lic. Analyzing such datasets can lead to fascinating insights
into the mobility patterns and behaviors of users. More-
over, in recent times a number of geospatial data-driven
companies like Uber, Lyft, and Foursquare have emerged.
Real-time analysis of geospatial data is essential and en-
ables an emerging class of applications. Database support
for geospatial operations is turning into a necessity instead
of a distinct feature provided by only a few databases. Even
though a lot of database systems provide geospatial support
nowadays, queries often do not consider the most current
database state. Geospatial queries are inherently slow given
the fact that some of these queries require a couple of ge-
ometric computations. Disk-based database systems that
do support geospatial datatypes and queries, provide rich
features and functions, but they fall behind when perfor-
mance is considered: specifically if real-time analysis of the
latest transactional state is a requirement. In this demon-
stration, we present HyPerSpace, an extension to the high-
performance main-memory database system HyPer devel-
oped at the Technical University of Munich, capable of pro-
cessing geospatial queries with sub-second latencies.

1. INTRODUCTION
There has been a rapid advancement in research areas

such as machine learning and data mining, which can be
attributed to the growth in the database industry and ad-
vances in data analysis research. This has resulted in a
need for systems that can extract useful information and
knowledge from data. Data scientists use various data min-
ing tools on top of databases for this purpose. To achieve
lower latencies and minimize transmission costs between the
database and external tools, it is necessary to move compu-
tation closer to the data. The current trend in database re-
search is to integrate these various analytical functionalities

PREPRINT

that are useful for knowledge discovery into the database
kernel. The goal is to have a full-fledged general-purpose
database that allows big data analysis along with conven-
tional transaction processing.

At the same time, there has been an emergence of
data-driven applications. Companies like Uber, Lyft, and
Foursquare have a need to create real-time applications,
including alerting systems, that consider the most current
state of their data, enabling real world awareness. Some of
these applications have been enabled by the advent of the
Internet of Things and the massive amounts of geotagged
sensor data it generates.

There are publicly available datasets that can help in
geospatial exploration. The New York City (NYC) Taxi
Rides [6] dataset is a good example, but is only a sample
of what is captured by the aforementioned companies. The
dataset contains approximately 1.1 billion taxi rides taken
in the city since 2009. This represents about 470,000 taxi
rides everyday in one of the most densely populated cities
in the world. Uber, a popular on demand car service avail-
able via a mobile application, has also made a subset of
the taxi rides available for the cities of San Francisco and
NYC. For NYC, Uber published data containing around 19
million rides for the periods from April to September 2014
and from January to June 2015 [9]. Ever since the datasets
were published, there have been multiple static analyses on
these datasets [10, 2, 9]. The authors of [1] present a com-
prehensive system built from scratch for storing, querying,
and visualizing geospatial data using kd-trees. Their system
takes two seconds to execute a query that returns 100,000
taxi trips, which is too slow to address real-time workloads.
MemSQL has some real-time capabilities [7] and is one of the
first main-memory database systems (MMDBs) to deeply
integrate geospatial support. The current database systems
do not offer the performance required by real-time appli-
cations, and companies are often forced to build their own
solutions [4]. We estimate that a 10x performance improve-
ment is needed in general-purpose database systems to en-
able such applications/analytics.

We want to offer high-performance geospatial processing
in a general-purpose database system that meets the require-
ments of real-time workloads, which can be used by emerging
applications and data scientists alike without having to build
their own system or use external tools for data analytics.
Recent advancements in MMDBs research make it possible
to efficiently create snapshots of the current database state.
With our proposed system called HyPerSpace, we built a
first prototype into that direction. Our goal is to drasti-



cally improve the performance of geospatial data processing
in relational database systems by carefully using advanced
encoding schemes and index structures. In our demo, we
will present a web-based prototype called HyPerMaps that
shows that it is possible to have an interactive analysis on
geographical data using a general-purpose database system
instead of a custom hand-written solution.

PostGIS [8] is a spatial database extension for the Post-
greSQL object-relational database system. It adds support
for geographic objects allowing users to formulate geospatial
queries in SQL. PostGIS adds two popular spatial datatypes
to PostgreSQL: geometry and geography. The geometry
datatype treats the earth as a two dimensional flat surface.
The earth is projected onto a plane and geographical co-
ordinates are mapped to a two dimensional cartesian co-
ordinate system. When evaluating spatial predicates such
as ST Covers, ST Intersects and spatial measurements such
as ST Area, ST Distance, this datatype allows for high effi-
ciency, however, it comes with a drawback. Since it treats
the earth as a two dimensional plane, the computations are
not precise over a large area as the spherical nature of the
earth is not considered. To put this into context, consider
an example of the shortest distance between two points. In
a 2D cartesian plane, the shortest distance between two
points is a straight line, while on a spheroid the shortest
distance between two points is a geodesic (shortest distance
on the great circle). In contrast to geometry, the geography
datatype treats the earth as a three dimensional spheroid
and all the computations are based on the spheroid. The
computations are precise since they are done on a spheroid,
but they are very slow compared to those on geometry.

We implemented the geography datatype and the corre-
sponding geospatial predicates, such as ST Covers, in the
high-performance hybrid OLTP and OLAP MMDB Hy-
Per [3]1. We achieve much better performance compared to
an open-source database PostgreSQL, a commercially avail-
able MMDB (System A), and a successful key-value store
(System B). This demonstration presents HyPerSpace and
showcases that an interactive analysis of huge amounts of
rapidly changing geospatial data is indeed possible.

2. HYPERSPACE
Similar to what PostGIS is to PostgreSQL, HyPerSpace

is a geospatial extension to HyPer, a high-performance re-
lational MMDB that is optimized for modern multi-core
CPUs. HyPer belongs to an emerging class of hybrid
databases, which enable real world awareness in real time
by evaluating OLAP queries directly in the transactional
database. In HyPer, OLAP is decoupled from mission-
critical OLTP either by using the copy on write feature of the
virtual memory management or multi version concurrency
control [5]. These snapshotting mechanisms enable HyPer-
Space to evaluate geospatial predicates on rapidly changing
datasets.

For geospatial data processing in HyPerSpace, we make
use of the Google S2 geometry library2. This is not novel,
since System B also uses the S2 library for evaluating geospa-
tial predicates. The novelty of our system is the integration
of geospatial functionalities into a high-performance MMDB

1When saying HyPer, we are referring to the research version
of HyPer developed at the Technical University of Munich.
2https://code.google.com/archive/p/s2-geometry-library/

with snapshotting mechanisms which makes it possible to
evaluate geospatial predicates on rapidly changing datasets.

At the moment, we support the three geospatial datatypes
Point, LineString, and Polygon. Most of the geospatial
processing is done using the S2 library.

S2 decomposes the earth into a hierarchy of cells. It con-
siders earth of radius 1, and encloses it in a cube that com-
pletely covers it. S2 projects a point on the earth’s surface
onto one of the cube’s faces and finds the cell that contains
it. The faces of the cube are the top level cells, which can be
recursively divided into four children to obtain lower level
cells. There are 30 levels in total, and cells at the same level
cover equivalent areas on earth (e.g., level 30 cells cover ap-
proximately 1cm2 each). The cells are enumerated using the
Hilbert space-filling curve. The Hilbert curve is hierarchical
in nature and fits well with the decomposition of earth into
cells. Hilbert space-filling curves are fast to encode/decode
and they have a very desirable spatial property: they pre-
serve spatial locality. This means that the points on earth
that are close to each other are also close on the Hilbert
curve. The enumeration of the cells gives a compact rep-
resentation of each cell in a 64 bit integer called CellId. A
CellId thus uniquely identifies a cell in the cell decomposi-
tion. Similarly, other spatial datatypes like LineString and
Polygon can be approximated using cells.

The enumeration of cells in S2 is hierarchical, which means
that a parent cell shares its prefix with its children. To check
if a cell is contained in another, we simply need to compare
their prefixes, which is a bit operation. This enables one
to index points based on their CellIds and thus be able to
retrieve points contained in a certain cell by performing a
prefix lookup on the index. B tree data structures are a
good choice to index CellIds, since they support fast prefix
lookups (essentially range scans). Additionally, B trees allow
for high update rates, which is an essential requirement for
real-time workloads.

3. EVALUATION
All experiments were run single threaded on an Ubuntu

15.04 machine with an Intel Xeon E5-2660 v2 CPU
(2.20 GHz, 3.00 GHz maximum turbo boost) and 256 GB
DDR3 RAM and all reported performance results are av-
erages over ten runs.

For evaluation, we used the NYC Taxi Rides dataset con-
sisting of approximately 1.1 billion rides taken in the city
from January 2009 until June 2015. The dataset includes
the pickup and dropoff locations (latitudes and longitudes),
pickup and dropoff times, and various details about the trip,
such as distance, payment type, number of passengers, var-
ious taxes, tolls, surcharge, tip amount, and total fare. For
privacy reasons, it does not contain details about drivers
or passengers. The exact route taken for the trip is also
not available. We needed to clean the dataset as some of
the pickup or dropoff locations did not make sense as they
were way outside NYC. We cleaned such records from the
dataset and only considered rides that originated between
longitude values -70.00 and -80.00, and latitude values 35.00
and 45.00. For evaluation, we made use of the taxi data for
the month of January 2015. The cleaned dataset for January
2015 contains a total of 12505344 records.

We compared HyPerSpace with the following related sys-
tems: System A, System B, and PostgreSQL 9.4.5 (postgis-
2.2.0). Since PostgreSQL does not support intra-query par-



20.88

6.29

9.69

0.580.63 0.290.5
0

5

10

15

20

HyPerSpace System A PostgreSQL System B

M
 c

o−
or

di
na

te
s/

s

with index

without index

Figure 1: HyPerSpace vs. related systems: through-
put of ST Covers using lat/long co-ordinates

5

34
29

65

0

20

40

60

GoogleBTree CellUnionContains STLMultiMap FastContains

M
 c

o−
or

di
na

te
s/

s

Figure 2: Microbenchmark results: throughput of
ST Covers using lat/long co-ordinates

allelism, we configured all systems to run single threaded.
For evaluation purposes, we find how many rides originated
from Midtown Manhattan in January 2015. In SQL nota-
tion, the following query is issued:

select count(*)

from nyc,pickups_jan_2015

where ST_Covers(nyc.geog,pickups_jan_2015.geog)

and borough=’Manhattan’

and neighborhood=’Midtown’;

With the exception of System B, with NoSQL syntax, the
query looks similar on all systems.

Figure 1 shows the throughput of the ST Covers predicate
for all of the systems. System A, System B, and PostgreSQL
achieve better performance when using appropriate index
structures. Particularly System B, which also makes use
of the Google S2 geometry library, benefits from its index
on points. System B’s index is basically a B tree on the
64bit CellIds. System B computes an exterior covering of
the polygon using the S2 library. That covering consists of
cells at various levels (i.e., of different sizes). For each cell of
this covering, it then performs a prefix lookup in the B tree
(essentially a range scan) and evaluates qualifying points for
actual containment in the polygon. System B suffers heavily
from its document-based storage layout, since it needs to
parse GeoJSON documents at runtime.

HyPerSpace completes the query in 550ms and thus
achieves more than twice the performance of its closest com-
petitor, which is System A with an index on points (1290ms).
We have not evaluated HyPerSpace with an index on points
yet, but ran multiple microbenchmarks outside of HyPer-
Space. All microbenchmarks were implemented in C++11
and compiled with gcc 4.9.2 with -O3 and -march=native

settings. We compared the implementation CellUnionCon-
tains that we used in HyPerSpace as well as FastContains,
which is a modified version of the S2Loop.Contains imple-
mentation that skips the initial bounding box check, to the
two index-based implementations GoogleBTree and STL-
MultiMap.

Figure 2 shows the throughput of the ST Covers predicate
for the different implementations. GoogleBTree, which is an

implementation similar to System B’s index, completes the
workload in 191ms. In the GoogleBTree implementation, we
first compute exterior and interior coverings for the given
polygon and then perform a range scan in a Google B tree3

for each cell of the exterior covering. For each qualifying
point, we check whether the point is contained in the interior
covering, which is essentially a binary search on a sorted vec-
tor of CellIds. Only if a point qualifies the exterior, but not
the interior covering, an exact containment check using our
modified implementation of the S2Loop.Contains function
needs to be performed. The other index-based implementa-
tion STLMultiMap takes twice as long (425ms) as GoogleB-
Tree to complete the workload, even though it uses the same
approach. In C++11, the stl::multi_map interface that we
used in this case is implemented by a RB tree, which is less
efficient for range scans. It is well known that a B+ tree
would yield even higher rates for range scans than a B tree.
However, for the sake of expediency and reproducibility of
our measurements, we have used the B tree implementation
provided by Google instead of a custom B+ tree implemen-
tation. Once we integrate this approach into HyPerSpace,
we will make use of an optimized B+ tree implementation.
The difference in performance between the two implementa-
tions GoogleBTree and STLMultiMap shows that the overall
runtime of this approach is heavily influenced by the actual
index structure used.

The approach CellUnionContains completes the workload
in 367ms, compared to 550ms when implemented within Hy-
PerSpace. The overhead is mostly caused by function calls
that are issued for each of the 12M points. CellUnionCon-
tains is a straightforward approach. It first computes the
bounding box and exterior and interior coverings for the
given polygon. For each of the points, CellUnionContains
then performs the following steps: First, it checks whether
the point is within the bounding box. If that is the case,
it checks for containment in one of the cells of the exterior
covering. Analogous to the containment check for the inte-
rior covering, this essentially comes down to a binary search.
Then the CellUnionContains approach continues analogous
to the GoogleBTree approach by checking the interior cover-
ing and performing the exact containment check if necessary.
By properly using the S2 mechanisms, our CellUnionCon-
tains approach achieves a slightly better performance than
the index-based STLMultiMap approach, even though we
have to loop over all of the 12M points.

4. DEMONSTRATION
We created an interactive web interface, called HyPer-

Maps, that demonstrates the outstanding geospatial pro-
cessing performance of HyPerSpace on the NYC Taxi Rides
dataset. The user interaction concept of HyPerMaps is de-
signed to minimize the requirement of users’ expertize with
the explored data. The ability of HyPerSpace to answer
queries with typically sub-second latency enables tight feed-
back loops. It supports users during query formulation and
encourages an iterative approach. During filtering of the
data, users can rely on datatype dependent elements, which
provide context-based information like value distributions or
geographic locations in real time. Users can draw polygons
on the map to filter points geographically. Subsequently,
users can combine different graphical and textual represen-

3https://code.google.com/archive/p/cpp-btree/



Figure 3: Interactive visualization of a real-time re-
play of NYC taxi rides using HyPerMaps

tations to create an informative and intuitive visualization.
During this data exploration process, HyPerMaps will au-
tomatically compute updated results reflecting the current
state of the user interface as well as the underlying dataset.

Figure 3 shows HyPerMaps visualizing the taxi dataset.
On the left, various tiles allow users to specify filters on
the data, which will be immediately translated into SQL
code as illustrated on the top. This binding works in both
directions—manually written SQL code will be translated
into corresponding tiles. Users can choose between a heat
map and pins to display selected points on the map. On
the right, HyPerMaps shows aggregated information about
selected points in tabular or in chart form.

During the demonstration we will run a HyPerSpace in-
stance on a demonstration laptop with two months of data
already loaded and one month of data being replayed at var-
ious speeds. We will motivate our demonstration by showing
a scenario of a hotel owner wanting to install a shuttle bus
for his or her guests to allow them to save money on their
arrival, departure, and daily travels by not having to take
expensive taxis. The hotel owner will select the taxi pickup
area of his hotel by drawing a polygon on HyPerMaps, which
boils down to a similar database query that we previously
used for the evaluation of the different systems. Then, com-
mon dropoff areas of the taxi rides originating from this area
will be displayed and the hotel owner can retrieve aggregate
information for each of these areas. HyPerMaps will com-
pute how much money and CO2 emissions would be saved on
aggregate if the hotel owner would install a shuttle to one of
these dropoff areas. Additionally, we will demonstrate var-
ious scenarios showing that recently ingested data will be
immediately reflected in HyPerMaps, thereby enabling real
world awareness in real time.

5. TAKE-AWAY MESSAGE
In this paper, we presented HyPerSpace, a geospatial ex-

tension to the MMDB HyPer. Our implementation of the
ST Covers predicate achieves a much lower latency than cor-
responding implementations in related systems, without us-
ing any index structures. Additionally, we found that using
index structures optimized for range scans such as B trees or
B+ trees on CellIds, can yield even lower latencies. In our
demo, we will show that it is indeed possible to build real-
time visualizations on geographical data using a general-

purpose database system instead of a custom hand-written
solution that takes much longer to build and is harder to
maintain. The novelty of our system is the integration of
geospatial functionalities into a high-performance MMDB
that allows for efficient snapshotting of the current database
state. Our contribution also includes the careful use of the
features of the Google S2 geometry library, thereby achiev-
ing much lower latencies than related systems. This makes
it possible for the first time to evaluate inherently complex
geospatial predicates on high throughput data streams in
real time. To demonstrate this, we created a web inter-
face that allows users to interactively explore the NYC Taxi
Rides dataset while the data is being replayed at various
speeds. Our demo shows that features (such as value dis-
tributions) of the entire dataset, including the most current
data, can be used to populate UI elements, thereby sup-
porting users in creating meaningful (aggregated) real-time
visualizations.

6. ACKNOWLEDGEMENTS
This work is part of the TUM Living Lab Connected Mo-

bility (TUM LLCM) project and has been funded by the
Bayerisches Staatsministerium für Wirtschaft und Medien,
Energie und Technologie (StMWi).

7. REFERENCES
[1] N. F. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T.

Silva. Visual Exploration of Big Spatio-Temporal
Urban Data: A Study of New York City Taxi Trips. In
IEEE Transactions on Visualization and Computer
Graphics, pages 2149–2158, December 2013.

[2] R. Fischer-Baum and C. Bialik. Uber Is Taking
Millions Of Manhattan Rides Away From Taxis.
http://fivethirtyeight.com/features/uber-is-taking-
millions-of-manhattan-rides-away-from-taxis/.

[3] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP
& OLAP Main Memory Database System Based on
Virtual Memory Snapshots. In ICDE, pages 195–206,
Apr. 2011.

[4] J. Miranda. Uber Unveils its Realtime Market
Platform. http://www.infoq.com/news/2015/03/uber-
realtime-market-platform/.

[5] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
Serializable Multi-Version Concurrency Control for
Main-Memory Database Systems. In SIGMOD,
SIGMOD ’15, pages 677–689, New York, NY, USA,
2015. ACM.

[6] TLC Trip Record Data. http://www.nyc.gov/html/
tlc/html/about/trip record data.shtml.

[7] G. Orenstein. Real-Time Geospatial Intelligence with
Supercar. http://blog.memsql.com/real-time-
geospatial-intelligence-with-supercar/.

[8] PostGIS. http://postgis.net/.

[9] T. Schneider. Analyzing 1.1 Billion NYC Taxi and
Uber Trips, with a Vengeance.
http://toddwschneider.com/posts/analyzing-1-1-
billion-nyc-taxi-and-uber-trips-with-a-vengeance/.

[10] C. Wong. FOILing NYC’s Taxi Trip Data.
http://chriswhong.com/open-data/foil nyc taxi/.


