
MLearn: A Declarative Machine Learning Language
for Database Systems

Maximilian E. Schüle
m.schuele@tum.de

Matthias Bungeroth
matthias.bungeroth@tum.de

Alfons Kemper
alfons.kemper@tum.de

Stephan Günnemann
stephan.guennemann@tum.de

Thomas Neumann
thomas.neumann@tum.de

Technical University of Munich

ABSTRACT
This paper outlines the requirements of our ML2SQL com-
piler that allows a dedicated machine learning language
(MLearn) to be run on different target architectures. The lan-
guage was designed to cover an end-to-end machine learning
process, including initial data curation, with the focus on
moving computations inside the core of database systems. To
move computations to the data, we explain the architecture
of a compiler that translates into target specific user-defined-
functions for the PostgreSQL and HyPer database systems.
For computations inside user-defined-functions, we explain
the necessary tensor datatypes and the corresponding func-
tions. We base the explanations on an accompanying exam-
ple of linear regression. To face the challenges to database
systems arising from array-like data, we propose such solu-
tions as integrating ArrayQL as stored procedures to unify
the relational and array perspectives.

CCS CONCEPTS
• Information systems→ Main memory engines;

KEYWORDS
SQL, Declarative Language, Database Scripting Languages
ACM Reference Format:
Maximilian E. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan
Günnemann, and Thomas Neumann. 2019. MLearn: A Declarative
Machine Learning Language for Database Systems. In International
Workshop on Data Management for End-to-End Machine Learning
(DEEM’30), June 30, 2019, Amsterdam, Netherlands. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3329486.3329494

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
DEEM’30, June 30, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6797-4/19/06. . . $15.00
https://doi.org/10.1145/3329486.3329494

MLearn

ML2SQL {Python, Postgres, HyPer}

Python
pl/pgSQL, HyPerScript create table taxiData (...);

readcsv {

name:taxiData

...

}

Figure 1: The Conception of MLearn: as a metalan-
guage, ML2SQL compiles code for a target (Python,
PostgreSQL, HyPer), also including CSV file prepro-
cessing.

1 INTRODUCTION
Data for machine learning has to be preprocessed until it
is possible to apply linear algebra to features aggregated to
matrices. For data curation, text-like data such as CSV files
have to be processed and cut until a suitable format is found.
Afterwards, such optimisation methods as gradient descent
find the optimal weights for a parameterised loss function
in order to allow predictions on unlabelled data.

From a systems developer point of view, database systems
form the native way of efficiently storing data in index struc-
tures. Inside of database systems, SQL, as the declarative
language, simplifies data curation because it allows feature
extraction as projections and selections of the only relevant
tuples by design. In addition, hybrid main-memory database
systems such as HyPer [4] combine transactional and ana-
lytical workload to avoid separate systems for each domain.
However, for machine learning purposes, data still has to be
extracted before training a model.
In the last decade, many studies have presented architec-

tures for building end-to-end machine learning systems [1, 3,
9]. To assist computations in database systems, the support
of matrix or tensor algebra is essential. Therefore, different
systems tackle the challenges of representing arrays natively

1

https://doi.org/10.1145/3329486.3329494
https://doi.org/10.1145/3329486.3329494

in database systems. Array database systems such as Ras-
DaMan [2] or SciDB [8] replace tables by arrays as the native
way of storing data.

As we want to move computations to the data, we have
analysed the power of scripting languages within database
systems. For database systems that support tensor operations,
we have demonstrated the ML2SQL compiler [7] that trans-
lates a dedicated machine learning language (MLearn) into
domain-specific database language extensions. This paper
focuses on the architectural stack for compiling the language
(s. Figure 1) and executing the result as stored procedures
inside of database systems.

The paper’s main contributions are the description of the
architecture behind MLearn with an accompanying example,
an extension of PostgreSQL by linear algebra and gradient
descent on array datatypes, as well as a look on integrating
array query languages.
This work is structured as follows: firstly, the MLearn

language is introduced together with the functionality of
the ML2SQL compiler for translation into Python, pl/pgSQL
or HyPerScript. Therefore, we will provide an example of
linear regression using data read from an CSV file to show
the modularity of the language. Then we will show how the
ML2SQL compiler translates these statements into the tar-
get language, here as user-defined functions for PostgreSQL
using pl/pgSQL. We therefore explain the technical back-
ground of features we have added, in order to run different
workloads.

2 THE MLEARN LANGUAGE

MLearn input

C preprocessor

ML preprocessor

Lexer Parser Visitor

PSQL/HyPer/Python Codegenerator

Output: .py/.sql

Figure 2: Compiling the MLearn language with the
ML2SQL compiler (dark blue): it first preprocesses im-
port and include statements, then it compiles to SQL
or Python code.

The dedicatedmachine learning languageMLearn is aimed
at preprocessing data and training models intuitively. It pro-
vides building blocks for data loading as well as for k-fold
cross validation. The underlying models can be optimised
by gradient descent or numerically using matrix operations.
In addition, the language allows the definition of customised
building blocks as functions based on procedural statements
and tensor algebra. The classical approach of working on

data is to use Python with libraries such as Pandas (for data
analysis), NumPy (for matrix operations) and TensorFlow
(for optimisations). We simplify the use of these by providing
building blocks that make use of the libraries stated when
using Python. For example, NumPy computations and Ten-
sorFlowmodels for gradient descent can be specified in linear
algebra instead of creating an expression tree manually.
readcsv{
name:taxiData
file:'/tmp/data/small.csv'
columns: trip_seconds ,trip_miles ,pickup_community_area ,

dropoff_community_area ,fare ,tips
delimiter: ','
delete empty entries

}

Listing 1: CSV file loading in MLearn: the building
block requires the target name, the source file,
the necessary columns and the delimiter; it allows
preprocessing options.

Listing 1 shows the building block for loading CSV files.
It requires the target name (to create tensors with NumPy
or relations in database systems), the name of the source
file, the necessary columns and the delimiter, as well as the
preprocessing options such as the deletion of certain en-
tries or string replacements. When compiling for SQL, the
resulting code creates a new table, copies CSV files with
domain-specific commands while the preprocessing options
are translated in update or delete queries (s. Listing 2).
create table taxiData(trip_seconds float ,

trip_miles float , pickup_community_area float ,
dropoff_community_area float , fare float , tips float);

\COPY taxiData(trip_seconds ,trip_miles ,
pickup_community_area ,dropoff_community_area ,fare ,
tips) FROM '/tmp/data/small.csv'WITH DELIMITER ','
CSV HEADER;

delete from taxiData where ((trip_seconds is null) or (
trip_miles is null) or (pickup_community_area is
null) or (dropoff_community_area is null) or (fare
is null) or (tips is null));

create table taxiDataTest(trip_seconds float ,
trip_miles float , pickup_community_area float ,
dropoff_community_area float , fare float , tips float);

\COPY taxiDataTest(trip_seconds ,trip_miles ,
pickup_community_area ,dropoff_community_area ,fare ,
tips) FROM '/tmp/data/small.csv'WITH DELIMITER ','
CSV HEADER;

delete from taxiDataTest where ((trip_seconds is null) or
(trip_miles is null) or (pickup_community_area is

null) or (dropoff_community_area is null) or (fare
is null) or (tips is null));

Listing 2: The compiled code for loading CSV
files in PostgreSQL: create, update and delete SQL
statements are used, as well as the copy command.

Actually, MLearn is designed as a meta-language to fa-
cilitate the use of database scripting languages or Python
frameworks. The ML2SQL compiler1 (s. Figure 2) produces
Python or SQL code runnable in PostgreSQL or HyPer. The
1https://gitlab.db.in.tum.de/ml2sql/ml2sql

https://gitlab.db.in.tum.de/ml2sql/ml2sql

compiler is written in ANTLR [5] and allows import and
include statements. As the other computations rely on the
initial data loading, the modular language design will allow
the inclusion of C preprocessor statements (internally, it uses
the gcc -E command). We allow two kinds of import state-
ments, include and import. The first command allows basic
text insertions known from the gcc preprocessor to load self-
defined modules. The second command imports predefined
libraries for time measurements, distributions and other con-
venient functions. In Listing 3, we make use of the import
statements to perform linear regression numerically: we first
load the libraries for time measurements, then we include the
predefined building blocks for loading a training and a test
dataset. Afterwards, we define tensors for the attributes (X)
and the labels (y); then we add one dimension to X for the
bias and finally we compute the optimal weights, all using
tensor algebra.

import time
import regression
import functions
#include "include/loadTaxiData.ml"
#include "include/loadTestTaxiData.ml"
create tensor DATA from taxiData(trip_seconds , trip_miles

, pickup_community_area , dropoff_community_area ,
fare , tips)

create tensor TEST_DATA from taxiDataTest(trip_seconds ,
trip_miles , pickup_community_area ,
dropoff_community_area , fare , tips)

X = DATA[: , 0:4]
y = DATA[: , 5]
X_test = TEST_DATA [: , 0:4]
y_test = TEST_DATA [: , 5:5]
start_bias = time()
X = addBiasTerm(X)
X_test = addBiasTerm(X_test)
end_bias = time()
start_reg = time()
w = regression(X , y)
end_reg = time()
start_pred = time()
err = predict(X_test , w) - y_test
avgLoss = sum(err.T * err)/len(X_test)
end_pred = time()
print 'AvgLoss:␣%' , avgLoss
print 'Time␣bias:␣%' , (end_bias - start_bias)
print 'Time␣reg:␣%' , (end_reg - start_reg)
print 'Time␣pred:␣%' , (end_pred - start_pred)
print 'Time␣total:␣%' , ((end_bias -start_bias) + (end_reg

- start_reg) + (end_pred - start_pred))

Listing 3: Numerical linear regression inMLearn.

3 TECHNICAL BACKGROUND
In order to allow machine-learning-related computations
within database systems, they have to provide tensors and
functionalities for training a model. HyPer has already ex-
tended its array datatype to serve as tensors by allowing
algebra on those types. Inside select clauses of query state-
ments, linear algebra on array datatypes allows various com-
putations. To reach a broader audience for our declarative
machine learning language, we also provide some matrix

Operation Symbol Arguments Result
scalar mul. a ∗ b a ∈ R,b ∈ Rn×m Rn×m

tensor mul. a ∗ b a ∈ Rn×o,b ∈ Ro×m Rn×m

tensor add. a + b a,b ∈ Rn×m Rn×m

tensor sub. a − b a,b ∈ Rn×m Rn×m

tensor power ab a ∈ Rn×n,b ∈ Z Rn×n

transpose at a ∈ Rn×m Rm×n

identity id(n) n ∈ N Bn×n

array fill f ill(r ,n,m) r ∈ R,n,m ∈ N Rn×m

Table 1: Implemented matrix operations for Post-
greSQL needed by MLearn.

algebra functionalities for PostgreSQL online2. The opera-
tions are first precompiled as a shared library (s. Listing 4),
then loaded by SQL statements (s. Listing 5). Table 1 shows
the list of matrix operations needed that we implemented
in PostgreSQL to allow pl/pgSQL procedures with matrix
operation produced by the ML2SQL compiler.
Datum tensor_add(PG_FUNCTION_ARGS)
{
...
ArrayType *a1 = PG_GETARG_ARRAYTYPE_P (0),

*a2 = PG_GETARG_ARRAYTYPE_P (1);
int *dim1 = ARR_DIMS(a1);
int *dim2 = ARR_DIMS(a2);
length1 = ArrayGetNItems(ARR_NDIM(a1), ARR_DIMS(a1));
Datum * ps1 = (Datum*) ARR_DATA_PTR(a1);
Datum * ps2 = (Datum*) ARR_DATA_PTR(a2);
#pragma omp parallel for
for (int i = 0; i < length1; i++){

float8 res = DatumGetFloat8(ps1[i]);
res += DatumGetFloat8(ps2[i]);
ps1[i] = Float8GetDatum(res);

}
PG_RETURN_ARRAYTYPE_P(a1);

}

Listing 4: Exemplary tensor operation (add)
programmed in C for PostgreSQL.

CREATE or REPLACE FUNCTION tensor_add(FLOAT [], FLOAT [])
RETURNS FLOAT [] AS

'/tmp/psql -matrix -extension/bin/MatrixOperations.so',
'tensor_add ' LANGUAGE C STRICT;

CREATE OPERATOR + (PROCEDURE=tensor_add ,
LEFTARG=FLOAT[],RIGHTARG=FLOAT []);

Listing 5: Operator creation for addition on arrays in
PostgreSQL out of the shared library.

In addition to matrix operations, a gradient descent opti-
miser is essential for training models inside database systems.
When compiling MLearn to SQL, we make use of our gra-
dient descent operator supporting automatic differentiation
with lambda expressions already integrated in HyPer [6].
Lambda expressions inject user-defined code into hard-coded
database operators, for example distance metrics in cluster-
ing algorithms. Here, they allow arbitrary loss functions to
2https://gitlab.db.in.tum.de/ml2sql/psql-matrix-extension

https://gitlab.db.in.tum.de/ml2sql/psql-matrix-extension

be specified as shown in Listing 6. Inside, we can combine
attributes from a training dataset with weights, either indi-
vidually by hand or aggregated to matrices.

select * from gradientdescent(
λ(d, w) (w.a+d.x1*w.b+dx2*c-d.y)2,
(select x1,x2,y from trainingdata d),
(select a,b,c from weights w) ,0.05, 100);

select * from gradientdescent(
λ(d, w) (w.w*d.x-d.y)2,
(select ARRAY[1,x1,x2] x, y from trainingdata d),
(select ARRAY[a,b,c] w from weights) ,0.05, 100);

Listing 6: Gradient descent table function using
lambda expressions: inside the expression, each
parameter can be combined separately or usingmatrix
algebra.

In addition to matrix operations, we adapted our gradient
descent framework to run with PostgreSQL. However, as the
dimensions of PostgreSQL arrays are assigned dynamically,
the PostgreSQL gradient descent operator expects the dimen-
sions as futher arguments inside the lambda expression for
the loss function. Together with these extensions, we are
now able to translate the code in Listing 3 to pl/pgSQL to run
in PostgreSQL. Listing 7 shows an extract of the resulting
code.

CREATE OR REPLACE FUNCTION regression(X float [][], y
float [][]) returns float [][] AS $$

declare
Xt float [][];

begin
Xt := matrix_transpose(X);
return matrix_power ((Xt*X) ,(-1):: integer)*Xt*y;

END; $$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION addBiasTerm(X float [][])
returns float [][] AS $$
declare

bias float [][];
begin
bias:= array_fill (1:: float ,ARRAY[1, array_length(X,0+1)]);
return matrix_transpose ((bias|| matrix_transpose(X)));

END; $$ LANGUAGE plpgsql;

Listing 7: Resulting pl/pgSQL procedures for linear
regression and increasing the matrix by the bias.

4 CONCLUSION AND ONGOINGWORK
This paper has introduced the architectural details behind
a declarative machine learning language (MLearn) with the
aim of shifting computations inside of the core of database
systems. It has shown how the ML2SQL compiler treats pre-
processor statements to allow the inclusion of code snippets
and libraries. It has provided a basic example of how to com-
pute linear regression and referred to the necessary technical
implementations such as gradient descent in PostgreSQL and
HyPer. For this purpose, we have specified the required ma-
trix operations in PostgreSQL with one coding example.

To sum up, we have discovered out that array processing
represents the major building block for tasks related to ma-
chine learning. These tasks would strongly benefit from SQL
especially for data preprocessing. In addition, when integrat-
ing the advantages of array database into hybrid OLTP and
OLAP database systems, no domain specific systems would
be required. We shall therefore work on applying matrix
algebra to tables using stored procedures that are written in
ArrayQL.

ACKNOWLEDGEMENT
This research has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 725286).

REFERENCES
[1] Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christo-

pher Ré. 2018. LevelHeaded: A Unified Engine for Business Intelligence
and Linear Algebra Querying. In ICDE 2018, Paris, France, April 16-19,
2018. 449–460. https://doi.org/10.1109/ICDE.2018.00048

[2] Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and
Norbert Widmann. 1998. The Multidimensional Database System Ras-
DaMan. In SIGMOD 1998, Proceedings ACM SIGMOD International Con-
ference on Management of Data, June 2-4, 1998, Seattle, Washington, USA.
575–577. https://doi.org/10.1145/276304.276386

[3] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald,
Frederick Reiss, Prithviraj Sen, Arvind Surve, and Shirish Tatikonda.
2016. SystemML: Declarative Machine Learning on Spark. PVLDB 9, 13
(2016), 1425–1436. https://doi.org/10.14778/3007263.3007279

[4] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid
OLTP&OLAP main memory database system based on virtual memory
snapshots. In ICDE 2011, April 11-16, 2011, Hannover, Germany. 195–206.
https://doi.org/10.1109/ICDE.2011.5767867

[5] Terence John Parr and Russell W. Quong. 1995. ANTLR: A Predicated-
LL(k) Parser Generator. Softw., Pract. Exper. 25, 7 (1995), 789–810.
https://doi.org/10.1002/spe.4380250705

[6] Maximilian Schüle, Frédéric Simonis, Thomas Heyenbrock, Alfons Kem-
per, Stephan Günneman, and Thomas Neumann. 2019. In-Database
Machine Learning: Gradient Descent and Tensor Algebra for Main
Memory Database Systems. In 18th symposium of "Database systems for
Business, Technology and Web" (BTW), in Rostock, Germany. Proceedings.

[7] Maximilian Schüle, Matthias Bungeroth, Dimitri Vorona, Alfons Kemper,
Stephan Günnemann, and Thomas Neumann. 2019. ML2SQL - Compil-
ing a Declarative Machine Learning Language to SQL and Python. In
EDBT 2019, Lisboa, Portugal, March 26-29, 2019.

[8] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011.
The Architecture of SciDB. In SSDBM 2011, Portland, OR, USA, July 20-22,
2011. Proceedings. 1–16. https://doi.org/10.1007/978-3-642-22351-8_1

[9] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi
Viswanathan, Saadiyah Husnoo, Samuel Madden, and Matei Zaharia.
2016. ModelDB: a system for machine learning model management. In
HILDA@SIGMOD 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
14. https://doi.org/10.1145/2939502.2939516

https://doi.org/10.1109/ICDE.2018.00048
https://doi.org/10.1145/276304.276386
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1007/978-3-642-22351-8_1
https://doi.org/10.1145/2939502.2939516

	Abstract
	1 Introduction
	2 The MLearn Language
	3 Technical Background
	4 Conclusion and Ongoing Work
	References

