
Tree-Encoded Bitmaps

Harald Lang
Technical University of Munich

harald.lang@tum.de

Alexander Beischl
Technical University of Munich

beischl@tum.de

Viktor Leis
Friedrich Schiller University Jena

viktor.leis@uni-jena.de

Peter Boncz
Centrum Wiskunde & Informatica

boncz@cwi.nl

Thomas Neumann
Technical University of Munich
thomas.neumann@in.tum.de

Alfons Kemper
Technical University of Munich

alfons.kemper@in.tum.de

ABSTRACT

We propose a novel method to represent compressed bitmaps.
Similarly to existing bitmap compression schemes, we exploit
the compression potential of bitmaps populated with con-
secutive identical bits, i.e., 0-runs and 1-runs. But in contrast
to prior work, our approach employs a binary tree structure
to represent runs of various lengths. Leaf nodes in the up-
per tree levels thereby represent longer runs, and vice versa.
The tree-based representation results in high compression
ratios and enables efficient random access, which in turn
allows for the fast intersection of bitmaps. Our experimental
analysis with randomly generated bitmaps shows that our
approach significantly improves over state-of-the-art com-
pression techniques when bitmaps are dense and/or only
barely clustered. Further, we evaluate our approach with
real-world data sets, showing that our tree-encoded bitmaps
can save up to one third of the space over existing techniques.

ACM Reference Format:

Harald Lang, Alexander Beischl, Viktor Leis, Peter Boncz, Thomas
Neumann, and Alfons Kemper. 2020. Tree-Encoded Bitmaps. In
Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data (SIGMOD’20), June 14ś19, 2020, Portland, OR,

USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3318464.3380588

1 INTRODUCTION

Bitmap indexes have a long history in database systems
and information retrieval [8, 11, 16, 37, 45, 53, 57]. They

SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 2020 ACM SIGMOD International Conference

on Management of Data (SIGMOD’20), June 14ś19, 2020, Portland, OR, USA,
https://doi.org/10.1145/3318464.3380588.

Figure 1: The key idea is to represent bitmaps as full

binary trees. Longer runs are mapped to tree nodes

closer to the root, and vice versa.

have many applications, such as efficiently evaluating predi-
cates [42, 45, 46] and have been used to accelerate join [44]
and aggregation [9, 46] queries. For medium or high cardi-
nality columns, bitmap indexes consist of many individual
bitmaps that are sparsely populated with 1-bits. Therefore,
plain bitmaps consume large amounts of space, and compres-
sion is essential.

Consider the case of a bitmap index on an attribute A con-
sisting of |A| individual bitmaps of length n, where |A| is the
number of distinct values of A and n the number of tuples in
the corresponding relation. The total number of 1-bits in the
index is also n, whereas each bitmap receives n

|A |
1-bits on

average. A high number of distinct values, or the presence
of skew, results in bitmap indexes with many sparsely pop-
ulated bitmaps. Sparsity implies that these bitmaps mostly
consist of consecutive 0-bits, i.e., 0-runs. Having long runs
of identical bits offers great compression potential, which all
existing bitmap compression schemes try to exploit.

One simple, but fairly effective bitmap compression scheme
is the Word-Aligned Hybrid [63] (WAH) approach, whose
compression is based on run-length encoding (RLE). AWAH-
compressed bitmap is a sequence of machine words, typically
32 or 64 bits in size. Each word either encodes a run or rep-
resents a small part of the original bitmap as is. The first is
called a fill word and the latter a literal word. While WAH
offers significantly better performance than its predecessor
the Byte-Aligned Bitmap Compression [2] (BBC), its com-
pression effectiveness suffers from two major weaknesses: (i)
runs need to be rather long for the RLE-based compression to
be effective and (ii) WAH has linear space overhead (one bit

https://doi.org/10.1145/3318464.3380588
https://doi.org/10.1145/3318464.3380588
https://doi.org/10.1145/3318464.3380588

per word) for distinguishing between fill and literal words.
In particular, the first weak point impairs compression when
some random bits (also called dirty bits or odd bits) disrupt
long runs. Over the years, several extensions to WAH have
been proposed to solve this issue, i.e., PLWAH [18], Con-
cise [15], VAL-WAH [22], EWAH [33], and SBH [27].

All the aforementioned compression techniques are based
on RLE and therefore share another disadvantage, namely
the linear time complexity of random access. Supporting ef-
ficient random access directly affects the efficiency of logical
operations like bitwise AND, which are common operations
in analytical queries.
Chambi et al. identified this problem and proposed the

Roaring Bitmap format [10]. In contrast to the aforemen-
tioned compression techniques, Roaring Bitmap does not rely
on RLE. Instead it partitions the input bitmap into equally
sized chunks of length 216 bits, where each chunk is phys-
ically stored in a separate container, as illustrated in Fig-
ure 2. Roaring implements three different container types
and each container type represents the corresponding part of
the bitmap differently. Depending on the number of bits set
and on the presence of 1-runs, Roaring chooses the container
type that consumes the smallest amount of memory. More
precisely, if the number of 1-bits is less than or equal to 4096,
an array container is used that stores a sorted list of 16-bit
integers, one for each set bit. The integer values correspond
to the positions of those bits within the current partition. If
the number of set bits exceeds 4096, Roaring either employs
a plain bitmap container or a run container [32]. A bitmap
container stores the partition as is. A run container on the
other hand stores the 1-runs as a list of 16-bit integer pairs
⟨a,b⟩, where [a,b] is the range spanned by the 1-run.
Overall, Roaring is a very lightweight approach in terms of

compression, as it only relies on integer arrays to represent
bitmaps. Integer values are thereby truncated to 16 bits as
every container encodes 216 bits of the bitmap. Nevertheless,
it results in significantly lower space consumption compared
to RLE-based techniques in most scenarios. Due to the fact
that the bit positions, the runs, and the containers themselves
are sorted, a random access can be performed in logarith-
mic time, which significantly improves the performance of
bitwise operation and thus of analytical queries [9].
It is worth mentioning that in principle Roaring is an ex-

tendable format, as it could employ any bitmap compression
technique at the container level; including the tree-encoded
bitmaps, we present in this work.
At the time of writing, Roaring was available in 11 pro-

gramming languages andwaswidely used in Apache projects
like Druid, Hive, Kylin, Lucence, Spark, and other systems1.
This shows that today’s applications not only demand high

1We refer the reader to the official web site [31] for more details.

1, 3, 11, 37,... [3,7], [42,51],... 0000100011101001001...

Figure 2: Roaring partitions the bitmap and stores

each partition using the best suitable container type.

compression ratios but also efficient logical operations on
compressed bitmaps. Further, we see a trend in database sys-
tems towards denser bitmapsÐin particular, when bitmap
indexes use histogram-based binning or are constructed to
support range queries [11, 12]. In both cases, the result-
ing bitmaps exhibit higher bit densities compared to simple
bitmap indexes as described at the beginning of this section2.

With this work, we contribute a novel method to compress
bitmaps. The compressed representation, which we call a
tree-encoded bitmap, provides high compression ratios paired
with logarithmic access time. Its primary strengths are the
abilities (i) to compress both long and short runs and (ii) to
significantly improve the compression ratios with denser
bitmaps over existing techniques. The major conceptual dif-
ference compared to other compressed bitmap formats is that
our approach employs a binary tree to represent bit runs of
various lengths as illustrated in Figure 1. Tree nodes in the
upper tree levels (closer to the root) thereby correspond to
longer runs, and tree nodes in the lower levels to shorter runs.
The low space requirement is achieved by using a succinct
tree encoding and additional space optimizations that trun-
cate balanced parts of the tree structure from the compressed
representation. A key insight is that although our approach
initially triples the size of a given bitmap to establish the
tree structure, it does not only amortize this overhead, but
also ultimately offers overall better compression ratios than
RLE-based compression methods or the state-of-the-art Roar-
ing Bitmap in a wide spectrum of moderately populated and
clustered bitmaps. Using a collection of real-world data sets,
we empirically found that tree-encoded bitmaps offer the
best compression in 7 out of 8 cases, saving up to 1/3 space
in comparison with the second best solution.

Notation. Throughout the paper, we let n denote the length
of a bitmap. Further, since compression heavily depends on
the data distribution, we use the following two metrics to
characterize individual bitmaps: (i) The bit density denoted as
d refers to the fraction of bits set to 1, where 0 ≤ d ≤ 1. The
total number of set bits in a bitmap is therefore d ·n. (ii) The
clustering factor denoted as f , with 1 ≤ f ≤ n, indicates the
degree of clustering of the 1-bits in a bitmap, i.e., how likely
a 1-bit is followed by another 1-bit. Formally, it is defined
as the average length of the 1-runs in a bitmap [63]. For

2 In Section 5 we give a brief overview on the design space of bitmap indexes.

0 0 0 01 1 0 1

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

(a) initial state (b) after pruning

Figure 3: A bitmap represented as a binary tree. Ini-

tially, each leaf node is assigned a single bit (label). Sib-

ling leaf nodes with identical labels are then pruned

and the label is assigned to their parent. After prun-

ing, the prior parent node becomes a leaf and repre-

sents multiple consecutive bits, a 0-run or a 1-run.

instance, the bitmap 01110010 (with d = 0.5) contains two
1-runs, one of length 3 and one of length 1. The clustering
factor f therefore equals to 2. As both d and f refer to the set
bits, they are dependent and the following restrictions apply:
The clustering factor cannot exceed the total number of bits
set (f ≤ d ·n). Further, when the bit density exceeds 50%, the
smallest possible value for f increases as well. E.g., given the
bitmap 01010101 with d = 0.5 and f = 1; when the leftmost
0-bit is toggled (11010101), d increases to 0.625 and f to 1.25.
In that particular case, 1.25 is the smallest possible clustering
for a bitmap of lengthn = 8 andd = 0.625. In the general case,
the smallest possible clustering is max(1,d/(1−d)). Clustered
bitmaps can be synthetically generated using a two-state
Markov process, whichwe describe in the evaluation section.

2 TREE-ENCODED BITMAPS

In this section, we present our Tree-Encoded Bitmaps (TEB).
The key idea behind TEB is to represent bitmaps as binary
trees, which enables efficient navigation and therefore fast
random access. The data structure is best explained by de-
scribing the construction algorithm.We therefore first present
the tree-based compression algorithm. Later in this section,
we describe how the tree is encoded space efficiently.

2.1 Compression

A TEB is constructed in two phases. In the first phase, a
perfect binary tree is established on top of a given bitmap, as
shown in Figure 3a. Each bit in the bitmap is associated with
a single leaf node of the binary tree. Only leaf nodes carry a
payload, which we refer to as labels. A label can either be a
0-bit or a 1-bit.

In the second construction phase, the binary tree is pruned
bottom-up. Thereby, the algorithm removes all sibling leaf
nodes with identical labels l , and the label l is assigned to
the parent node. The pruning process stops when all pairs
of sibling leaf nodes have different labels. Figure 3b depicts
a fully pruned tree. The important thing to note here is that

the newly created leaf nodes in the upper tree levels no
longer represent individual bits of the bitmap; instead they
represent consecutive bits that form either a 0-run or a 1-run.
For instance, the leftmost node in Figure 3b represents a
1-run of length 2, starting at index 0 and the rightmost node
represents a 0-run of length 4, starting at index 4.

With every single pruning step, two nodes are eliminated
from the tree structure and one bit from the labels. Bottom-
up pruning can therefore be considered a lossless compression

method. Compressing the tree structure is a crucial part of
TEB because the space overhead of the tree structure needs
to be amortized. The tree initially consists of 2n − 1 nodes,
assuming n is a power of two. When the tree structure is
encoded using one bit per node, then the space consumption
of a TEB, including the labels, is initially, and in worst case,
3n − 1 bits. Even though the worst case space consumption
is relatively high, we will show that our tree-based represen-
tation of bitmaps often achieves significantly lower space
usage than other compression schemes.

2.2 Encoding

An important part of TEB is the space-efficient way the tree
structure is stored. We employ a level-order binary marked

representation [24], which requires one bit per tree node. The
encoded tree itself therefore is a sequence of bits (a bitmap).
We have to differentiate between the tree data structure

that is used during compression and the encoded tree that is
eventually stored in a TEB. For the tree-based compression,
we temporarily make use of an implicit data structure [59]
that allows for fast modifications, but occupies a constant
amount of space ś constant in the sense that its size does
not change when nodes are removed. The level-order bi-
nary marked representation, on the other hand, is static but
requires less space once the tree has been pruned. Thus, en-
coding is the process with which we transform the pruned
tree into a more compact form.
To encode the pruned tree structure we traverse it in

breadth-first left-to-right order (or level-order) and for each
visited node a single bit is emitted, a 1-bit for inner nodes
and a 0-bit for leaf nodes. These bits are appended to the bit
sequence that represents the encoded tree, denoted asT . The
labels of the leaf nodes are stored as a separate bit sequence
to which we refer as L. When a leaf node is observed during
traversal, its label bit is appended to L. For instance, the tree
in Figure 3b is encoded as T = 1100100, L = 0101.

To support efficient random access and bitwise operations,
it is necessary to traverse the tree. Internally, the most impor-
tant primitive operation is to determine the two child nodes
of some given tree node, i.e., navigating downwards the tree.
Within the encoded tree, each tree node is identified by its
position in the bit sequence T . The sequence starts with the

root node at position 0. For any given tree node i , the child
nodes can then be determined as follows [24]:

left-child(i) := right-child(i) − 1

right-child(i) := 2 · rank(i)

where rank(i) refers to the number of 1-bits (inner nodes) in
T within the range [0, i].

Computing the rank of a node is a linear-time operation,
and navigating from the root to any leaf node is therefore an
O(n · logn) operation. However, the rank operation can be
turned into an O(1) operation at the cost of additional space
consumption [24]. TEB uses an implementation similar to
the one used in [68], which pre-computes the rank on 512-
bit block granularity and stores the values in an auxiliary
integer array; which results in a 6.25% increased memory
footprint. The rank is then computed as

rank(i) := R[⌊i/512⌋] + popcount(T , ⌊i/512⌋ · 512, i)

where R refers to the array with the pre-computed values at
block level and popcount counts the 1-bits in the last block
up to index i .
Using an additional integer array populated with pre-

computed ranks (a lookup table) is a common approach [20,
21, 43, 69] and changing the granularity of the lookup ta-
ble offers a space/time trade-off. The more coarse-grained
the lookup table is, the lower its space requirement and the
higher the costs for counting the 1-bits within the last block;
and vice versa. For TEB, we empirically determined that a
granularity of 512 bits offers competitive performance at a
reasonable space overhead. On a reasonably modern 64-bit
hardware, a navigational operation in the tree therefore re-
quires at most eight population count instructions (four on
average) and one array lookup.

Besides the downward navigation, the rank of a tree node
is further required to determine the node’s label. If the node i
is a leaf, then the position of the label within L is equal to the
number of 1-bits in T preceding node i , which corresponds
to the non-inclusive rank of i . However, because only leaf
nodes have labels, we can use the inclusive3 rank from above,
because T [rank(i)] is guaranteed to be a 0-bit. In summary,
a label is accessed as follows:

label(i) := L[i − rank(i)]

Let us close by mentioning that the chosen encoding re-
quires the tree structure to be a full binary tree, i.e., each
node has either zero or two child nodes. It is easy to show
that this holds for the tree structure of a TEB: Since the initial
binary tree is perfect, and pruning always affects two sibling
leaf nodes, the resulting tree structure remains full binary.

3We chose the inclusive rank as it results in fewer arithmetic instructions.

0 0.5 1
0

50

100

150

bit density d

si
ze

[K
iB
]

Bitmap

Roaring

TEB (basic)

WAH

Figure 4: Size comparison for varying bit densities and

a fixed clustering factor of 8.

1 0 1 01 0 1 0

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

Figure 5: In worst case, the tree cannot be pruned

(compressed) and the resulting TEB consumes approx-

imately three times the space of the original bitmap.

2.3 Optimizations

The basic idea of TEBwe have presented so far already shows
promising results with regard to compression ratios. For
instance, Figure 4 shows a space comparison of the TEB
approach with two state-of-the-art bitmap compression tech-
niques, Roaring and WAH. The compressed size (y-axis) de-
pends on the ratio of 1-bits in the original bitmap (x-axis).
Sparsely populated bitmaps offer higher compression poten-
tials than densely populated bitmaps. In that particular case,
if more than ∼25% of the bitmap is populated with 1-bits,
Roaring and WAH do not offer any compression at all. Both
fall back to an uncompressed (literal) representation. TEB,
on the other hand, is able to compress bitmaps with a bit
density of up to ∼45%.

The downside of the basic TEB approach is that in corner
cases it can significantly exceed the size of the plain bitmap.
In contrast to Roaring and WAH, our approach does not
support an alternative representation to which it could fall
back. In the following, we show that it is in fact not necessary
to switch between different representations to address the
high space consumption of TEB in unfavorable cases. It just
requires a few minor modifications to the data structure
and the compression algorithm, which we discuss in the
following.

Implicit Tree Nodes.We motivate our first space optimiza-
tion by considering the worst-case scenario for TEB. Figure 5
illustrates such a case. The depicted alternating bit sequence
does not offer any compression potential. All pairs of sib-
ling leaf nodes have different labels and therefore bottom-up

pruning cannot remove any tree nodes. The resulting TEB
would consist ofn−1 1-bits for the inner nodes, followed byn
0-bits for the leaf nodes, and n label bits. In this extreme case,
the label bits in L are identical to the uncompressed bitmap.
Thus, storing the encoded tree structure is pure overhead.

Our first space optimization is to omit the leading 1-bits
as well as the trailing 0-bits of the encoded tree structure.
Only the intermediate bits of the tree structure are stored in
the physical representation of a TEB. We refer to the omitted
nodes as implicit tree nodes, and to the remaining as explicit
tree nodes.
With regard to the worst case, this simple modification

allows for the elimination of the entire tree encoding from
the physical representation. Only the n label bits remain:

T = 1111111
︸ ︷︷ ︸

leading 1-bits

00000000
︸ ︷︷ ︸

trailing 0-bits

, L = 10101010

As mentioned before, the labels in L are identical to the
original bitmap, i.e., the TEB degraded into an uncompressed
bitmap. Thus, the size of the TEB is equal to the size of the
plain bitmap, except for a small overhead that is caused by
metadata.
However, further optimizations are needed, as this mi-

nor modification only mitigates the high space consump-
tion of TEBs when the plain bitmap is poorly compressible.
The TEB size may still significantly exceed the size of the
uncompressed bitmap, i.e., the worst case has shifted. The
modification, however, has two important implications:

(i) The encoded tree structureT is an optional part of the
physical TEB data structure, as the entire tree may be
implicit.

(ii) The space minimal TEB instance does not necessarily
contain a fully pruned tree.

We give an example for (ii) in Figure 6a. The depicted TEB
consists of three explicit tree nodes and four labels. Thus the
space requirement is 3 · 1.0625 + 4 = 7.1875 bits, where the
factor 1.0625 is to incorporate the space consumption of the
rank helper structure (cf. Section 2.2). Figure 6b shows the
TEB instance with the minimum size. The difference between
the two TEB instances is that in Figure 6a the tree is fully
pruned, whereas in 6b the two sibling leaves in the high-
lighted subtree have been preserved. The second instance
therefore comprises a larger tree, but even though the total
number of tree nodes and labels are higher, the second in-
stance occupies less space (2·1.0625+5 = 7.125 bits), as fewer
tree nodes need to be stored explicitly. The circumstance that
a fully pruned tree, in general, no longer corresponds to the
smallest TEB instance requires a modification to the bottom-
up pruning algorithm: Instead of returning the fully pruned
tree, the algorithm needs to return the smallest tree instance
observed during pruning, where the size is computed based

 implicit node explicit node

00 11

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

T = 11

explicit

︷︸︸︷
[

001
]

00

L = 0101

(a) fully pruned

0 00 11

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

T = 111

explicit

︷︸︸︷
[

01
]

0000

L = 10001

(b) partially pruned

Figure 6: Two different tree representations of the

bitmap 11010000. The fully pruned tree (a) occupies

more space than the partially pruned tree (b), as more

tree nodes need to be stored explicitly.

0 0.5 1
0

50

100

150

bit density d

si
ze

[K
iB
]

Bitmap

TEB (basic)

TEB (space optimized)

Figure 7: Size comparison of basic and space optimized

TEBs using a clustering factor of 8.

on the number of explicit nodes, rather than the total number
of nodes.

Implicit Labels. Our second modification is to omit leading
and trailing 0-labels in the physical TEB representation, sim-
ilarly to implicit tree nodes. Omitting the leading 0-labels
reduces the space consumption in particular with very sparse
bitmaps. The tree representation of a sparse bitmap typically
consists of a few leaf nodes with 1-labels at the deepest tree
level log2(n). But most of the leaf nodes with 0-labels can
be found in the tree levels 1 to log2(n) − 1. Due to the tree
being encoded in level order, the label bit sequence L tends
to start with a long run of 0-labels, which we do not need to
store explicitly. Trailing 0-labels on the other hand can occur
when the length of the input bitmap is not a power of two.
In that case, a TEB internally rounds up to the next power
of two and fills the range

[

n, 2 ⌈log2(n)⌉
)

with 0-bits. Omitting
these trailing 0-bits ensures that the number of stored labels
never exceeds the length of the original bitmap.

The presented modifications reduce the overall space us-
age, as shown in Figure 7. In particular, the worst-case space
consumption reduced from 3n−1 to n bits, excluding the

(small) metadata. We observe that in an optimized TEB the
fraction of space occupied by the tree, the rank helper struc-
ture, and the labels is no longer fixed; compare Figures 8a
and 8b. With sparse bitmaps, the labels occupy significantly
less space. With denser bitmaps, on the other hand, we see
that the fraction of space occupied by the tree structure de-
creases. Figure 9 shows how the implicit tree nodes and the
implicit labels optimizations contribute to the space savings.
The implicit labels optimization is most effective with sparse
bitmaps and the implicit tree node optimization, on the other
hand, favors denser bitmaps.
An important implication is that the space optimizations

balance the upper part of the tree structure, as the example in
Figure 6 has shown. The partially pruned tree in Figure 6b is
perfectly balanced until level two, whereas the fully pruned
tree in Figure 6a is only perfectly balanced until level one.
Thus in general, the tree can be split into an upper balanced
and a lower imbalanced part. This property allows for the
reduction of the cost of navigational operations. We exploit
the fact that within a perfect binary tree we can directly
address the individual tree nodes, i.e., without computing
ranks. If the number of the upper perfect levels is known,
these levels of the tree can be logically cut off, and only the
remaining sub-trees need to be considered. In our case, we
can directly compute the number of perfect levels u based
on the number of implicit inner nodes c that are already
known when the space optimizations have been applied:
u := ⌊log2(c+1)⌋+1. The corresponding node IDs for the last
perfect level are within the range [tbegin, tend), with tbegin :=
2u−1 − 1 and tend := 2u − 1. Each of these nodes, or the
sub-trees rooted at these nodes, respectively, span a range
of length 2log2(n)−u−1 in the original bitmap. Thus, it can be
considered as a uniform partitioning scheme, similar to the
one used in Roaring Bitmaps, but with the major difference
that the partition size is chosen adaptively.
The number of perfect tree levels is correlated with the

effectiveness of the tree-based compression. The less effective
the compression, the larger the number of perfect levels, and
vice versa. In worst case, the entire tree is implicit and the
number of perfect levels corresponds to the tree height. In
other words, TEBs gradually degrade into literal bitmaps,
but unlike Roaring and WAH, TEBs remain homogeneous
and do not need to switch between different encodings or
representations.

3 OPERATIONS

In this section, we describe the operations supported by TEB.
Fundamentally, a TEB supports two access methods: (i) a
point lookup and (ii) a 1-run iterator. High-level functionali-
ties, like decompressing a bitmap or logical operations are
implemented on top of the 1-run iterator.

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

of
sp
ac
e

Tree Rank Labels

(a) basic TEB

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

of
sp
ac
e

Tree Rank Labels

(b) optimized TEB

Figure 8: The fraction of space occupied by the tree,

the rank helper structure, and the labels.

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

Explicit Leading Trailing

(a) labels

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

Explicit Leading Trailing

(b) tree nodes

Figure 9: The fraction of explicitly stored labels (a) and

tree nodes (b).

Algorithm 1: Point lookup

Input :The bit index k to test
Returns :true if the kth bit is set, false otherwise

// Determine the tree node at the last perfect level.
toffset ← k >> (tree_height − perfect_levels − 1)
i ← tbegin + toffset
j ← tree_height − 1 − perfect_levels − 1
// Navigate downwards until a leaf node is observed.
while i is an inner node do

direction← extract jth bit from k

i ← left-child(i) + direction
j ← j − 1

end

return label(i)

3.1 Point Lookup

A point lookup is a straightforward operation that navigates
downward the tree until a leaf node is reached. The index k
of the bit to look up thereby specifies the path to take within
the tree. For performance reasons, the downward navigation
starts at the last perfect tree level rather than at the root
node. The details are shown in Algorithm 1.

3.2 Run Iterator

The iterator interface allows for efficient iteration over a TEB.
Unlike the iterators implemented in Roaring and WAH, the
TEB iterator does not iterate over the individual 1-bits, in-
stead it iterates over the 1-runs of a bitmap. A 1-run is thereby
represented as two integer values ⟨begin, end ⟩, pointing to
the position of the first 1-bit and to the position one past
the last 1-bit. The iterator traverses the tree in depth-first
left-to-right order. To navigate down the tree, the functions
left-child() and right-child() are used, as described in Sec-
tion 2.2. To navigate upwards, the iterator makes use of a
small stack that is populated during downward navigation.
Other data structures like SuRF [68] implement upwards
navigation using the select primitive, the counterpart to rank.
For TEB, we prefer a classic stack-based approach as it is
significantly faster in practice and saves space.
During tree traversal, the iterator needs to keep track

of its position (and level) within the tree structure. This
information is required to determine the start index and
length of a 1-run when the iterator reaches a leaf node with
label 1 and thus needs to produce an output. The iterator
therefore maintains a path variable that encodes the path
from the root to the current node using a single integer.
The initial (and minimum) value of the path variable p is
1. During downwards navigation, a 0-bit is shifted in when
navigating to the left child p := (p << 1) and a 1-bit when
navigating to the right child p := (p << 1) | 1. The index of
the most significant 1-bit (the sentinel bit) indicates the level
of the corresponding tree node:

level(p) := sizeof(p) · 8 − 1 − lzcount(p)

where sizeof(p) refers to the size of the variable p in bytes
and lzcount(p) to the number of leading zeros in p. A tree
node that is identified by its path p then represents a run
that starts at position

pos(p) := (p ⊕ (1 << level(p))) << (tree_height − level(p))

with length

length(p) := n >> level(p) =∧ 2log2(n)−level(p).

Similarly to the point lookup access method, the upper
perfect levels of the tree are skipped. The iterator only con-
siders the sub-trees rooted in [tbegin, tend), as described in
Section 2.3. Algorithm 2 shows how the iterator is forwarded
to the next 1-run.

As mentioned earlier, a time-critical operation is to fast-

forward the iterator to a desired position, thereby skipping
all set bits in between. Thanks to the navigable tree structure,
the operation can be performed in logarithmic time. Nev-
ertheless, to achieve competitive performance in practice,

Algorithm 2: Forward the iterator to the next 1-run.

while t < tend do

while stack is not empty do
// Pop tree node i and its path p from the stack.
⟨i,p⟩ ← stack.pop()
while i is an inner node do

// Push right child on stack and go to left child.
i ← left-child(i)
p ← p << 1
stack.push(⟨i + 1, p | 1⟩)

end

// Reached a leaf node.
if label(i) = 0 then continue

// Found a 1-run. Update the iterator state.
level← sizeof(p) · 8 − 1− lzcount(p)
begin← (p ⊕ (1 << level)) << (tree_height − level)

end← begin + (n >> level)

return
end

t ← t + 1
p← (t − tbegin) | (1 << (perfect_levels − 1))
stack.push(⟨t , p⟩)

end

begin← end← n // Reached the end.
return

we optimize the skip operation so that unnecessary naviga-
tion steps are avoided. The primary decision that is to be
made is whether to (i) navigate up the tree to the common
ancestor of the current and the destination node, and then
downwards in the right sub-tree to the desired position, or
(ii) start at the root node (or at the corresponding tree node
in the last perfect level) and navigate only downwards until
the desired position has been reached. Depending on the
source and destination nodes, one option might be more
efficient than the other. The two options may differ in the
number of required navigation steps. But we also need to
consider that navigating upwards is less costly in terms of
issued CPU instructions than navigating downwards. The
asymmetrical costs are mostly caused by the rank primitive,
which is significantly more costly than accessing the stack.
We experimentally determined that a downward step is ap-
proximately 9× more expensive than an upward step (∼55
cycles vs. ∼6 cycles).
Our decision logic works as follows: We start with a fast

test to determine whether the destination position is outside
of the current sub-tree:

pos >> (h − u − 1) != to_pos >> (h − u − 1)

where h refers to the tree height and u to the number of
perfect levels. If the expression evaluates to true, we can
directly go to the corresponding node at the last perfect
level and navigate downwards until the desired position has
been reached. Otherwise, if the destination node is within

the current sub-tree, we (i) determine the common ancestor
node (ii), estimate the navigational costs for both options,
and (iii) pick the cheaper path.
It is worth mentioning that an iterator with skip support

is not the most efficient way to decompress (rather than
intersect) a TEB. For these cases we provide an alternative
iterator to which we refer to as scan iterator. Unlike the
regular iterator, the scan iterator’s seek function operates in
O(n), but it offers a significantly higher read throughput, as
it (i) decodes the tree in batches and (ii) does not rely on the
rank primitive to traverse the tree.

3.3 Tree Scan

In this section, we present a tree traversal algorithm that is
optimized for modern x86 hardware. The algorithm takes
a level-order encoded binary tree and iterates over all leaf
nodes in left-to-right order. We refer to the algorithm as tree
scan. The tree scan is the basic building block for the TEB
scan iterator.

Generally speaking, navigating from one leaf node to the
next one is a 3-step process: (i) navigate up the tree until a
left child is observed, (ii) go to its right sibling, and (iii) walk
down the tree to the leftmost leaf node. The key idea behind
our solution is to have multiple lightweight bit iterators for
the encoded tree structure T , one iterator per tree level, and
then scan the bit sequence T in parallel. We denote the bit
iterators in T as tl with 0 ≤ l < h. Initially, all iterators
point to the first bit in T at their corresponding level l . We
expose the values each iterator points to as an integer value,
denoted as α . The bits in α := bh−1 . . .b1b0 are populated
with bl = ∗tl , where ∗ denotes the dereference operator. A
path variablep identifies the position and the level within the
tree, as described earlier. Initially,p points to the leftmost leaf
node. Using the two values α and p, we can efficiently iterate
over all leaf nodes in left-to-right order, cf., Algorithm 3.
Thereby, p determines the number of upward steps and α

determines the number of downward steps to perform in
each iteration.

The bit iterators are implemented using the AVX-512 SIMD
instruction set as follows. We use a 512-bit SIMD register
to buffer the tree structure. The register is interpreted as
32 × 16-bit integers, i.e., the register is split into 32 lanes.
Thereby, each SIMD lane corresponds to a tree level. For
each level we load up to 16 bits from the encoded treeT . For
instance, Figure 10 illustrates a buffer that contains the tree
from Figure 6b. To consume the buffered tree bit by bit, we
use a second SIMD register to which we refer as read mask.
The read mask again consists of 32 lanes, and a single bit
is set within each lane. Initially, the least significant bit is
set to 1. The position of that bit represents the current read
position in the corresponding buffer lane. Thus, the read
mask represents the state of all (up to) 32 lightweight bit

Algorithm 3: Tree scan

p // The current path. Initially points to the leftmost leaf.
do

// Produce an output, if the label of the current node is 1.
. . .

// Walk upwards until a left child is found.
up_steps← tzcount(∼p)
last← level(p) + 1
p ← p >> up_steps

p ← p | 1 // Go to the right sibling.
first← level(p)
increment the iterators tfirst to tlast and update α
// Walk downwards to the leftmost leaf in that sub-tree.
down_steps← tzcount(∼(α >> level(p)))
p ← p << down_steps

while not done

α

Figure 10: AVX-512 allows for the instantiation of up

to 32 lightweight bit iterators (one for each tree level)

using only two SIMD registers: The first is used to

buffer the encoded tree level by level and the second

represents the iterators’ read positions.

iterators. The increment of an iterator is then implemented
as a left shift of the corresponding lane. The implementation
has the advantages that we can work with multiple itera-
tors in parallel and that the most important operations can
be performed in a single instruction. For instance, multiple
iterators can be incremented using a single masked shift in-
struction (_mm512_mask_slli_epi164) and all iterators can
be dereferenced in parallel to retrieve the aforementioned α
value; cf., Figure 10.

The presented algorithm is used in the TEB scan iterator
that is supposed to be used when efficient skip support is
not required, e.g., when decompressing an entire TEB. With
regard to performance, the scan iterator benefits from the
predictable memory access pattern, as well as from the re-
duced number of memory loads, due to buffering. However,
a problem not mentioned above is that we need to know the
start offset in T for each tree level. Unfortunately, determin-
ing these offsets is a linear time operation. Therefore, we
store the offsets as part of the TEB metadata, which now is
logarithmic in size. For brevity we have omitted some of the

4We refer the reader to the Intel Intrinsics Guide for more details on
the SIMD instruction set architectures: https://software.intel.com/sites/
landingpage/IntrinsicsGuide

https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide

Algorithm 4: Next function of the AND iterator.

Input :Run iterators a and b.
while !(a.begin != n | | b.begin != n) do

begin_max ← max(a.begin, b.begin)
end_min← min(a.end, b.end)
overlap← begin_max < end_min

if overlap then

if a.end ≤ b.end then a.next()

if b.end ≤ a.end then b.next()
begin← begin_max // Update the iterator state.
end ← end_min

return
else

if a.end ≤ b.end then a.skip_to(b.begin)

else b.skip_to(a.begin)

end

end

begin← end← n // Reached the end.

implementation details, such as how buffers are refilled and
how labels are buffered and accessed; which works similarly
to the buffering of the tree structure. We invite the interested
reader to examine the source code of TEB5.

3.4 Logical Operations

Asmentioned earlier, high-level functionality is implemented
on top of the 1-run iterator. Operations like a bitwise AND
are themselves implemented as iterators and can therefore
be arbitrarily chained and combined to evaluate complex ex-
pressions. Algorithm 4, for instance, shows how two bitmaps
are intersected using the iterator API. In contrast to the im-
plementations in Roaring and WAH, the iterator approach
does not produce a compressed bitmap. We think this is not
a disadvantage because producing compressed intermedi-
ate results when evaluating complex compressions could
harm performance. For instance, when bitmap indexes are
used to evaluate multi-dimensional selection predicates, it is
sufficient to identify the ranges (or pages) that contain qual-
ifying tuples; an intermediate bitmap would be discarded
afterwards anyhow.

3.5 Updates

Data structure design in general is a trade-off between read,
update, and memory overheads. The RUM conjecture [3]
states that when optimizing (reducing) two of these over-
heads, it impairs the third one. TEBs are optimized for effi-
cient read access and low memory consumption, and simi-
larly to existing RLE-based compression schemes, the static
nature of TEBs does not allow for in-place updates. In the fol-
lowing, we discuss various approaches that can be combined
with TEBs to achieve updatability.

5TEB source code: https://db.in.tum.de/research/publications/#teb

WAH EWAH Concise Roaring TEB

Census Income 3.4 3.3 2.9 2.6 2.1

Census Income (sorted) 0.66 0.64 0.55 0.6 0.36

Census 1881 34.4 33.8 25.6 15.1 12.6

Census 1881 (sorted) 3.0 2.9 2.5 2.1 1.5

Weather 6.8 6.7 5.9 5.4 4.2

Weather (sorted) 0.55 0.54 0.43 0.34 0.26

WikiLeaks 11.1 10.9 10.2 5.9 5.4

WikiLeaks (sorted) 2.9 2.7 2.2 1.7 1.7

Table 1: Space usage in bits per attribute value.

The naïve and costly way to support random updates is
to decompress the bitmap, perform the update on the un-
compressed representation, and (re-)compress it again after-
wards. Prior work [4] proposed to reduce the update costs
by staging updates in an auxiliary differential data structure
and to apply these pending updates in batches, rather than
one-by-one. Thereby, another compressed bitmap is used
as a differential data structure. While this approach greatly
reduces the number of decompression/compression cycles,
it also causes redundancies (slightly higher memory con-
sumption) and requires the differential data structure to be
consulted (XORed) during read access.
Roaring bitmap applies a different strategy. Due to the

fixed size partitioning, an update affects only a single con-
tainer, rather than the entire bitmap. Thus, in worst-case, 216

bits need to be re-compressed during updates. Updates can
therefore be performed in constant time6, even though the
constant is quite large. Nevertheless, the partition size has
been chosen sufficiently small to fit in an L1 cache to enable
efficient decompression/compression cycles.

Both approaches can be usedwith TEBs. Partitioning could
further be combined with differential updates so that a sep-
arate diff is maintained per partition. We will show in the
later evaluation section that the combined approach offers
the highest throughput regarding updates, with minor com-
promises regarding reads.

4 EXPERIMENTAL ANALYSIS

In the following, we evaluate our approach with regard to
its compression ratio and performance. We begin by using a
number of real-world data sets before performing a detailed
evaluation using synthetic data.

4.1 Real-World Data

We evaluate TEBs with bitmaps from bitmap indexes con-
structed from four real-world data sets that have been previ-
ously used in the experimental evaluation of Roaring Bitmaps
[32]. The data sets, namely Census Income, Census 1881,

6Assuming the corresponding containers reside in heap memory. Modifica-
tions to the serialized format would still be in linear time.

https://db.in.tum.de/research/publications/#teb

Weather, and WikiLeaks, come in two flavors: as is and
sorted. The latter relies on a-priori sorting of the raw in-
put data, which leads to significantly better compression
ratios [33, 34, 47]. Following the prior work, we compress
the individual bitmaps, 200 per data set, and report the av-
erage number of bits per attribute value. We compare TEB
with Concise, EWAH, Roaring, and WAH. The results for
Concise and EWAH are taken from [32]. We reproduced the
results for Roaring with very minor differences with the
sorted Census 1881 andWikiLeaks data. But we observed a
higher discrepancy for WAH. Among our experiments, we
observed a slightly higher space usage than reported earlier,
except for Census 1881 where we observed a significantly
better compression ratio (34.4 vs. 43.8 bits per element). We
attribute these discrepancies to the fact that we use a differ-
ent implementation [60] of WAH. Please note that EWAH
and WAH use 32-bit words; we omit the results for the 64-bit
implementations, as those have a higher space consumption
among all tested workloads.
Table 1 summarizes the experimental results. TEB offers

the best compression ratios, except for the sortedWikiLeaks

data, where Roaring is slightly better (1.667 vs. 1.677 bits
per element). TEB saves up to 22% space on unsorted data
and up to 34.6% on sorted data compared to the second best
compression technique, which in most cases is Roaring.

The rank lookup table (LuT) thereby accounts for 2.2% to
4.4% of the TEB size (3.7% geo. mean, among all real-world
data sets). As mentioned earlier, changing the resolution of
the LuT offers a space/time trade-off. A fine-grained LuT
with one entry per 64 bit offers the best performance. We
observe a 30% lower execution time for computing bitmap
intersections. The memory overhead of the LuT thereby in-
creases significantly to up to 27%, which almost cancels out
the improvements in compression. Decreasing the LuT reso-
lution to 2048 bits on the other hand reduces the TEB size by
up to 2.8% but also causes the intersection time to increase
by up to 10%. Table 2 shows how the space consumption
of TEBs changes for varying rank resolutions compared to
Roaring. Throughout our experiments, we found that a 512-
bit resolution offers a reasonable space/time trade-off, which
we use as our default setting in the following. Neverthe-
less, it is noteworthy that the rank LuT could be omitted
when TEBs are written to persistent storage, and could be
recomputed on-the-fly when TEBs are loaded back into main
memory, allowing one to save additional disk space and I/O
(cf., rightmost column in Table 2).

4.2 Synthetic Data

For an in-depth analysis we generate random bitmaps, where
the individual 1-bits are either uniformly distributed or clus-
tered. Uniform random bitmaps are random bitmaps where
each bit is independently generated following an identical

Rank LuT resolution [bits] no
64 128 256 512 2048 LuT

Census 1881 1.10 0.95 0.87 0.83 0.81 0.80
Census 1881 (sorted) 0.87 0.76 0.71 0.69 0.67 0.66
Census Inc. 0.93 0.86 0.82 0.81 0.79 0.79
Census Inc. (sorted) 0.76 0.66 0.62 0.60 0.58 0.58
Weather 0.93 0.84 0.80 0.77 0.76 0.75
Weather (sorted) 0.97 0.84 0.79 0.76 0.74 0.73
WikiLeaks 1.18 1.02 0.95 0.91 0.89 0.88
WikiLeaks (sorted) 1.25 1.11 1.04 1.01 0.98 0.98

Table 2: Relative size of TEB compared to Roaring
(
TEB size/Roaring size

)

for varying rank resolutions.

probability distribution [63], i.e, each bit is set with prob-
ability d . Clustered random bitmaps on the other hand are
generated using a two-state Markov process

01-p 1
p

q

1-q

with the transition probabilities p and q set to

p :=
d

(1 − d) · f
, and q :=

1

f

with 0 < d < 1 and 1 ≤ f ≤ n. We make a minor change
over the definition given in [63]; which is that we choose the
initial state randomly with a probability of 0.5, whereas in
[63] the initial state is 1 , meaning that a randomly generated
bitmap would always start with a 1-run.

We generate bitmaps of length n = 220 and report the aver-
aged results over 10 independent experiments. We compare
TEB with WAH [63], which is the most popular RLE-based
bitmap compression scheme, and with Roaring Bitmap [32],
which is the state-of-the-art with regard to performance and
compression ratio. The thorough study of Wang et al. [57]
found Roaring to be superior over other bitmap compression
techniques such as Concise [15], WAH, EWAH [33], VAL-
WAH [22], PLWAH [18], and SBH [27]. We therefore limit
our evaluation to Roaring and WAH.

For the experiments we use FastBit [60, 61] v2.0.3, which
provides a C++ implementation of WAH, and CRoaring [5]
v0.2.60 (unity build), the official C/C++ implementation of
Roaring Bitmap. The dynamic_bitset from the Boost C++
libraries [7] v1.67.0 is used for uncompressed bitmaps. We
compile with GCC v8.3.0 (-O3 -march=native) and execute
on an Intel Core i9-7900X CPU @ 4GHz.

4.2.1 Compression.

Uniform Bitmaps. In the following, we examine the com-
pression ratios with uniform random bitmaps with varying
bit densities. The results in Figure 11 show that TEB and
Roaring are on par in the case of sparse bitmaps (d < 0.005).
With an increasing d , TEB shows the lowest space usage.

0.001 0.01 0.1
0

50

100

150

bit density d (log scale)

si
ze

[K
iB
]

Bitmap

Roaring

TEB

WAH

Figure 11: Size of uniform random bitmaps with vary-

ing bit densities. The dotted line refers to the informa-

tion theoretic minimum.

0.001 0.01 0.1 1

1

10

100

1,000

10,000

bit density d (log scale)

cl
u
st
er
in
g
fa
ct
or

f
(l
og

sc
al
e)

highly compressed (less than 1% of the original size)

TEB and Roaring compress similarly (±2%)

TEB compresses best (up to 56% space savings over Roaring)

incompressible

Figure 12: Summary of our findings when compress-

ing clustered bitmaps.

When more than 13% of the bitmap is populated, TEB is no
longer able to compress; Roaring and WAH already stop at
5%. With dense bitmaps (0.5 < d ≤ 1) we observed sym-
metrical results for TEB and WAH, only Roaring requires
a density of more than 97% for the compression to work
again (rather than 95%). This is attributed to the different
containers being used in Roaring, and the fact that Roaring
encodes 0-runs and 1-runs differently, which is in contrast
to TEB and WAH.

Clustered Bitmaps.With our third experiment, we exam-
ine the compression ratios with clustered bitmaps, using
varying bit densities d and clustering factors f . We start with
an exploration of the space spanned by d and f . Thereby,
we consider the ranges 0.0001 ≤ d < 1 and 1 ≤ f ≤ n. We
make the following observations:

• When the input bitmaps are very sparsely populated or
exhibit a strong clustering, all bitmap compression tech-
niques under test perform well. In the dotted area () in
Figure 12, the compressed bitmaps occupy less than 1% of

the space of the uncompressed bitmap, irrespective from
the employed compression scheme.
• TEB offers better compression ratios than WAH through-
out all measurements; and only in some rare cases does
WAH compress slightly better than Roaring.
• When comparing TEB and Roaring, TEB does not always
offer the best compression ratios. However, in these cases,
the differences in size are marginal. The largest difference
in size we observed throughout all experiments is 1.6%
of the original bitmap size. In the area marked with in
Figure 12, TEB and Roaring perform similarly.
• TEB in contrast, shows significantly higher compression
ratios with denser bitmaps and bitmaps with lower clus-
tering, cf. the area marked with in Figure 12. In com-
parison to Roaring, we observed a difference in size of up
to 56% of the plain bitmap size, in favor of TEB. Figure 13
shows a qualitative side-by-side comparison.

Figure 14 gives a detailed view on how the size of the com-
pressed bitmaps change for varying d and fixed f . Figure 14a
shows that the TEB approach is able to exploit short 1-runs
in sparse bitmaps, resulting in up to ∼50% space savings over
Roaring. With a moderate clustering, as shown in Figure 14b,
our approach is also able to compress dense bitmaps. Fig-
ure 14c, on the other hand, reveals that our approach has
a slightly higher space usage than Roaring with strongly
clustered bitmaps, which implies that Roaring can encode
longer runs more space efficiently.

Figure 15 illustrates how f affects the compression ratios.
Figures 15a and 15b show that already a slight clustering
can lead to significant space savings with TEB. Roaring re-
quires a significantly higher clustering to be competitive.
With sparser bitmaps, TEB falls slightly behind Roaring (see
Figure 15c), whereas WAH cannot compete.

4.2.2 Performance.

In the following, we evaluate the read and update perfor-
mance of TEB, and show how it compares to Roaring and
WAH.

Read Access. We first investigate the read (or decompres-
sion) throughput. We thereby iterate over all 1-runs of a
bitmap and measure the duration in wall-clock time. In
our initial performance experiment, we again explore the
space spanned by d and f . Thereby we observe that an un-
compressed bitmap performs better than the compressed
formats when 16 ≤ f ≤ 128 and 0.01 ≤ d < 1. It should
be noted that the dynamic_bitset implementation, which
we use for uncompressed bitmaps, is very straightforward
and does not include any hardware specific optimizations.
Thus, we expect a performance-optimized implementation
to dominate an even larger space. When we consider only
the performance of compressed bitmaps, we observe that the

0.01 0.1 1
10

20
0

0.5

1

d
fsp

ac
e
sa
vi
n
gs

(a) TEB

0.01 0.1 1
10

20
0

0.5

1

d
fsp

ac
e
sa
vi
n
gs

(b) Roaring

0.01 0.1 1
10

20
0

0.5

1

d
fsp

ac
e
sa
vi
n
gs

(c) WAH

Figure 13: Space savings
(

1 − compressed size
uncompressed size

)

for varying d and f .

0 0.5 1
0

50

100

150

bit density d

si
ze

[K
iB
]

(a) f = 4

0 0.5 1
0

50

100

150

bit density d

si
ze

[K
iB
]

(b) f = 16

0 0.5 1
0

10

20

bit density d

si
ze

[K
iB
]

Bitmap Roaring TEB WAH

(c) f = 512

Figure 14: Compressed bitmap size for varying bit densities and fixed clustering factors.

0 10 20
0

50

100

150

clustering factor f

si
ze

[K
iB
]

(a) d = 0.25

0 10 20
0

50

100

150

clustering factor f

si
ze

[K
iB
]

(b) d = 0.1

0 10 20
0

10

20

clustering factor f

si
ze

[K
iB
]

(c) d = 0.01

Figure 15: Compressed bitmap size for varying clustering factors and fixed bit densities.

clustering mostly determines the best performing compres-
sion technique: Roaring is dominant when f ≤ 16, followed
byWAHuntil f is approximately 128. TEB requires an evenly
higher clustering (f > 128) to outperform Roaring andWAH.

In Figure 16, we compare the performance for reasonable
values of d and f , which we expect to occur in practice.
We fixed d to {0.25, 0.1, 0.01} and varied f within the range
[1, 20]. We observe that the time to read the bitmap decreases
with an increasing f , which is due to the smaller size of the
input and due to less branching; the higher f is, the lower
the number of 1-runs to iterate over. Figure 16a, with d set to
0.25, shows that TEB offers a similar performance as WAH,
and that both are close to the performance of Roaring. Still,
a plain bitmap performs best in most cases. The outliers at

f = 1 and f = 2 are due to specialized code paths that are
taken when the bitmaps are not compressed (or just barely
compressed). In the Figures 16b and 16c, with bit densities
reduced to 0.1 and 0.01, we observe that the absolute time
to read a bitmap decreases for all implementations under
test (note the different y-axis scales), but also that TEB falls
behind relative to Roaring and WAH, indicating that the
average cost per 1-run increases with lower d . Naturally, this
is an expected result, as lower bit densities result in sparse
and imbalanced trees, which in turn increases the number
of tree levels that need to be traversed (cf., Section 2).

In our second experiment, we evaluate the effectiveness of
efficient tree navigations within logical operations. We inter-
sect (bitwise AND) two bitmaps with different characteristics.

0 10 200

1,000

2,000

3,000

clustering factor f

ti
m
e
[µ
s]

(a) d = 0.25

0 10 200

500

1,000

1,500

2,000

clustering factor f

ti
m
e
[µ
s]

(b) d = 0.1

0 10 200

200

400

clustering factor f

ti
m
e
[µ
s]

Bitmap Roaring TEB WAH

(c) d = 0.01

Figure 16: Read performance for varying clustering factors and fixed bit densities.

0 0.2 0.4 0.6 0.80

1,000

2,000

3,000

bit density d2

ti
m
e
[µ
s]

(a) d1 = 0.01, f1 = 8, f2 = 4

0 10 200

1,000

2,000

3,000

clustering factor f2

ti
m
e
[µ
s]

(b) d1 = 0.01, f1 = 8,d2 = 0.25

Figure 17: Intersection performance.

The density and the clustering in the first bitmap is thereby
fixed to d1 = 0.01 and f1 = 8. In Figure 17a, we fix the clus-
tering in the second bitmap to f2 = 4 and vary the density
d2. We observe that the density of the second bitmap only
has a minor impact on the overall intersection time, except
for WAH. The intersection of uncompressed bitmaps, with
constant time random access, is fastest in this setting. Roar-
ing takes ∼1.5× the time of the plain bitmap intersection,
and TEB ∼1.9× the time of Roaring. In Figure 17b, we fix the
density of the second bitmap to d2 = 0.25 and vary f2. Again,
only WAH is sensitive to the varying clustering factor and
thus to the size of the second bitmap. On average, Roaring
needs ∼1.8× the time of the plain bitmap intersection, and
TEB ∼1.6× the time of Roaring.

Differential Updates. In our final experiments, we extend
TEB and the other bitmap compression techniques under
test by a differential data structure and evaluate the update
performance. Our experiments revealed that WAH is not
well suited as a differential data structure. We found that
Roaring significantly outperforms WAH in that regard, be-
cause (i) the partitioned in-memory layout of Roaring offers
significantly faster updates and (ii) the better compression
ratios of Roaring reduce the amount of memory occupied by

Compression avg. time per update [ns]

method non-partitioned partitioned

TEB 599 218

Roaring 480∗ / 574 121∗ / 216

WAH 17634 794

∗ using the in-memory layout (non serialized)

Table 3: The average time to apply an update.

pending updates. We therefore use Roaring as a differential
data structure in the following and omit the results for WAH.

Wemeasure the update throughput by applying 100k point
updates to a compressed bitmap (with n=220, d=0.1, f =8) and
report the average execution time. The number of pending
updates is limited to 20k; i.e., a merge is triggered when this
threshold is reached. Further, we examine how partitioning
affects the execution time of point updates. We partition the
bitmap into chunks of 216 bits, whereas each chunk has its
own diff. The results in Table 3 show that TEB and Roaring
are on par, whereas WAH is several times slower. WAH
suffers from the linear time complexity of point lookups that
are involved with updates. Data partitioning helps to reduce
the access latency significantly, but the average time of an
update is still 3.6× higher. The performance of Roaring on the

other hand could be improved by using its in-memory layout
and its specialized XOR implementations for the individual
container combinations (cf., the results marked with * in
Table 3). The optimization is enabled by the fact that both
the value bitmap and the differential bitmap are Roaring
bitmaps. In a pure in-memory setting, Roaring therefore
outperforms TEB by up to 1.8× and WAH by more than 6×
in terms of update latency (in the partitioned case).
Pending updates naturally impair read latency. We ob-

served a 30% penalty for TEB and Roaring with 20k pending
updates (20% with WAH), irrespective of partitioning. For
more general information on the trade-offs involved with
differential updates, we refer the reader to UpBit [4].

5 RELATED WORK

Throughout the paper, we already covered the related work
regarding bitmap compression techniques [2, 4, 15, 18, 22,
27, 32, 33, 57, 63], except for the HICAMP bitmap [56] which
is designed for a special kind of memory system [13]. In the
following, we discuss other related work.

Bitmap Indexes. Bitmap indexes and bitmap compression
are orthogonal topics, as bitmap indexes may also be con-
structed with verbatim bitmaps. However, in practice, com-
pression is commonly used to reduce space consumption and
to improve query performance. Thus, the term bitmap index
often refers to a compressed bitmap index. Compression, how-
ever, is just one aspect of a bitmap index. Other techniques
that are involved when a bitmap index is constructed are (i)
binning [28, 65, 66] which groups multiple attribute values
together and (ii) encoding [11, 12, 46] which translates the
bins into a set of bitmaps [64]. Thereby, an encoding scheme
is chosen that best supports the query workload. Common
encodings are equality encoding, range encoding and in-
terval encoding, whereas the latter two allow for arbitrary
range queries by accessing at most two bitmaps. Optionally,
an attribute value may be decomposed into multiple compo-
nents that are individually assigned to bins afterwards. A
single attribute value may therefore map to multiple bins.
An extreme case is the bit-sliced index [46, 50], where the
attribute values are decomposed bit-by-bit, and the number
of bins (and bitmaps) is equal to the bit-width of the attribute.

Binning, encoding, and decomposition influence the char-
acteristics of the individual bitmaps [64] of an index. Conse-
quently, they affect the overall index size and eventually the
query performance [25, 62]. A thorough evaluation of TEBs
within the large design space of bitmap indexes is therefore
beyond the scope of this work.

Succinct Data Structures. The space efficiency of TEBs is
founded on the idea of mapping tree nodes to integer values
[30] and the foundational work on succinctly encoded binary

trees [24] that efficiently support the necessary navigational
operations using the rank and select primitives. Both primi-
tives require a helper structure to lower the time complexity
of tree navigations from linear to constant time. Several im-
plementations have been been proposed [20, 21, 43, 55, 69] to
achieve the performance of pointer-based tree structures. A
key to success, in terms of performance, was the introduction
of the population count instruction, which unfortunately was
quite late in wide-spread x86 processors (AMD 2007, Intel
2008). Over the years, other succinct tree encodings have
been proposed [6, 14, 17, 39, 40, 49] that support a richer set
of operations or being updatable [41]; both, however, would
incur higher space consumption and/or lower performance
with TEB.

Lightweight Indexing. Space-efficient secondary index
structures, in general, have attracted a lot of interest in data-
base research. Many lightweight data structures have been
proposed to accelerate table scans by skipping (i) blocks of tu-
ples [1, 38, 51, 52, 54, 67], (ii) scan ranges within blocks [29],
or (iii) (parts of) individual tuples [19, 23, 35, 36, 48]. Other
index structures were designed to support specific kinds of
queries, e.g., queries with a LIMIT clause [26], or for specific
kinds of data, e.g., observational data [58]. Most of these in-
dex structures rely on lightweight statistical data that is easy
to maintain and query. The more heavyweight approaches
either store approximations of the indexed columns [23, 51]
or even require a different storage layout [19, 36].

6 CONCLUSION

The Tree-Encoded Bitmap (TEB) is a novel approach for com-
pressing bitmaps. Its tree-based compression algorithmmaps
0- or 1-runs of various lengths to binary tree nodes, where
the depth of a node implicitly determines its run length. The
resulting tree structure is then encoded using a succinct phys-
ical data structure that supports logarithmic access time and
therefore allows for efficient logical operations (such as in-
tersections) on compressed data. We experimentally showed
that TEB saves considerable space compared to other com-
pressed bitmap formatsÐin particular at higher bit densities,
i.e., those cases where memory consumption would other-
wise be fairly high. In terms of access speed, TEB is quite
fast for intersection operations: almost as fast as the com-
peting approach Roaring, and much faster than WAH. In the
data distributions where TEB is strongest in saving space, its
raw scan performance is also close to Roaring. As such, TEB
encoded chunks could also be used as a worthwhile addition
to the adaptive Roaring approach, significantly improving
compression in the most difficult data distributions, while
preserving performance.

Acknowledgements. This work was supported by the DFG project KE401/22.

REFERENCES
[1] Karolina Alexiou, Donald Kossmann, and Per-Åke Larson. 2013. Adap-

tive Range Filters for Cold Data: Avoiding Trips to Siberia. PVLDB
6, 14 (2013), 1714ś1725. http://www.vldb.org/pvldb/vol6/p1714-
kossmann.pdf

[2] G. Antoshenkov. 1995. Byte-aligned bitmap compression. In Proceed-

ings DCC ’95 Data Compression Conference. 476ś. https://doi.org/10.
1109/DCC.1995.515586

[3] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Sto-
ica, Stratos Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016.
Designing Access Methods: The RUM Conjecture. In Proceedings of

the 19th International Conference on Extending Database Technology,

EDBT 2016, Bordeaux, France, March 15-16, 2016. 461ś466. https:
//doi.org/10.5441/002/edbt.2016.42

[4] Manos Athanassoulis, Zheng Yan, and Stratos Idreos. 2016. UpBit:
Scalable In-Memory Updatable Bitmap Indexing. In Proceedings of

the 2016 International Conference on Management of Data, SIGMOD

Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. 1319ś
1332. https://doi.org/10.1145/2882903.2915964

[5] The RoaringBitmap authors. [n.d.]. Roaring Bitmap. https://github.
com/RoaringBitmap/RoaringBitmap. [Online; accessed 27-May-2019].

[6] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh
Raman, and S. Srinivasa Rao. 2005. Representing Trees of Higher
Degree. Algorithmica 43, 4 (2005), 275ś292. https://doi.org/10.1007/
s00453-004-1146-6

[7] Boost.org. [n.d.]. Boost C++ Libraries. https://www.boost.org/. [On-
line; accessed 04-Jun-2019].

[8] Michael Cain and Kent Milligan. 2011. IBMDB2 for i indexing methods
and strategies. IBM White Paper.

[9] Samy Chambi, Daniel Lemire, Robert Godin, Kamel Boukhalfa,
Charles R. Allen, and Fangjin Yang. 2016. Optimizing Druid with
Roaring bitmaps. In Proceedings of the 20th International Database Engi-
neering & Applications Symposium, IDEAS 2016, Montreal, QC, Canada,

July 11-13, 2016. 77ś86. https://doi.org/10.1145/2938503.2938515
[10] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2014.

Better bitmap performance with Roaring bitmaps. CoRR abs/1402.6407
(2014). arXiv:1402.6407 http://arxiv.org/abs/1402.6407

[11] Chee Yong Chan and Yannis E. Ioannidis. 1998. Bitmap Index Design
and Evaluation. In SIGMOD 1998, Proceedings ACM SIGMOD Inter-

national Conference on Management of Data, June 2-4, 1998, Seattle,

Washington, USA. 355ś366. https://doi.org/10.1145/276304.276336
[12] Chee Yong Chan and Yannis E. Ioannidis. 1999. An Efficient Bitmap

Encoding Scheme for Selection Queries. In SIGMOD 1999, Proceedings

ACM SIGMOD International Conference on Management of Data, June

1-3, 1999, Philadelphia, Pennsylvania, USA. 215ś226. https://doi.org/
10.1145/304182.304201

[13] David R. Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P.
Stevenson, and Omid Azizi. 2012. HICAMP: architectural support for
efficient concurrency-safe shared structured data access. In Proceed-

ings of the 17th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2012, London,

UK, March 3-7, 2012. 287ś300. https://doi.org/10.1145/2150976.2151007
[14] David R. Clark and J. Ian Munro. 1996. Efficient Suffix Trees on Sec-

ondary Storage (SODA ’96), Vol. 96. Society for Industrial and Applied
Mathematics, USA, 383ś391.

[15] Alessandro Colantonio and Roberto Di Pietro. 2010. Concise: Com-
pressed ’n’ Composable Integer Set. Inf. Process. Lett. 110, 16 (2010),
644ś650. https://doi.org/10.1016/j.ipl.2010.05.018

[16] Oracle Corporation. 2005. Bitmap Index vs. B-tree Index: Which
and When? https://www.oracle.com/technetwork/articles/sharma-
indexes-093638.html. [Online; accessed 14-Jun-2019].

[17] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. 2017. On
Succinct Representations of Binary Trees. Mathematics in Computer

Science 11, 2 (2017), 177ś189. https://doi.org/10.1007/s11786-017-0294-
4

[18] François Deliège and Torben Bach Pedersen. 2010. Position list word
aligned hybrid: optimizing space and performance for compressed
bitmaps. In EDBT 2010, 13th International Conference on Extending

Database Technology, Lausanne, Switzerland, March 22-26, 2010, Pro-

ceedings. 228ś239. https://doi.org/10.1145/1739041.1739071
[19] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice:

Pushing the Envelop of Main Memory Data Processing with a New
Storage Layout. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, Melbourne, Victoria, Australia, May

31 - June 4, 2015. 31ś46. https://doi.org/10.1145/2723372.2747642
[20] Simon Gog, Timo Beller, Alistair Moffat, andMatthias Petri. 2014. From

Theory to Practice: Plug and Play with Succinct Data Structures. In
13th International Symposium on Experimental Algorithms, (SEA 2014).
326ś337.

[21] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo
Navarro. 2005. Practical implementation of rank and select queries.
In Poster Proc. Volume of 4th Workshop on Efficient and Experimental

Algorithms (WEA). 27ś38.
[22] Gheorghi Guzun, Guadalupe Canahuate, David Chiu, and Jason Sawin.

2014. A tunable compression framework for bitmap indices. In IEEE

30th International Conference on Data Engineering, Chicago, ICDE 2014,

IL, USA, March 31 - April 4, 2014. 484ś495. https://doi.org/10.1109/
ICDE.2014.6816675

[23] Brian Hentschel, Michael S. Kester, and Stratos Idreos. 2018. Column
Sketches: A Scan Accelerator for Rapid and Robust Predicate Evalua-
tion. In Proceedings of the 2018 International Conference on Management

of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
857ś872. https://doi.org/10.1145/3183713.3196911

[24] Guy Jacobson. 1989. Space-efficient Static Trees and Graphs. In 30th

Annual Symposium on Foundations of Computer Science, Research Tri-

angle Park, North Carolina, USA, 30 October - 1 November 1989. 549ś554.
https://doi.org/10.1109/SFCS.1989.63533

[25] Theodore Johnson. 1999. Performance Measurements of Compressed
Bitmap Indices. InVLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,

UK. 278ś289. http://www.vldb.org/conf/1999/P29.pdf
[26] Albert Kim, Liqi Xu, Tarique Siddiqui, Silu Huang, Samuel Madden,

and Aditya G. Parameswaran. 2016. Speedy Browsing and Sampling
with NeedleTail. CoRR abs/1611.04705 (2016). arXiv:1611.04705 http:
//arxiv.org/abs/1611.04705

[27] Sangchul Kim, Junhee Lee, Srinivasa Rao Satti, and Bongki Moon.
2016. SBH: Super byte-aligned hybrid bitmap compression. Inf. Syst.
62 (2016), 155ś168. https://doi.org/10.1016/j.is.2016.07.004

[28] Nick Koudas. 2000. Space Efficient Bitmap Indexing. In Proceedings

of the 2000 ACM CIKM International Conference on Information and

Knowledge Management, McLean, VA, USA, November 6-11, 2000. 194ś
201. https://doi.org/10.1145/354756.354819

[29] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and
OLAP on Compressed Storage using both Vectorization and Compila-
tion. In Proceedings of the 2016 International Conference on Management

of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -

July 01, 2016. 311ś326. https://doi.org/10.1145/2882903.2882925
[30] C. C. Lee, D. T. Lee, and C. K. Wong. 1986. Generating Binary Trees of

Bounded Height. Acta Inf. 23, 5 (1986), 529ś544. https://doi.org/10.
1007/BF00288468

[31] Daniel Lemire. [n.d.]. Official Roaring Bitmap website. https://
roaringbitmap.org. [Online; accessed 27-May-2019].

http://www.vldb.org/pvldb/vol6/p1714-kossmann.pdf
http://www.vldb.org/pvldb/vol6/p1714-kossmann.pdf
https://doi.org/10.1109/DCC.1995.515586
https://doi.org/10.1109/DCC.1995.515586
https://doi.org/10.5441/002/edbt.2016.42
https://doi.org/10.5441/002/edbt.2016.42
https://doi.org/10.1145/2882903.2915964
https://github.com/RoaringBitmap/RoaringBitmap
https://github.com/RoaringBitmap/RoaringBitmap
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1007/s00453-004-1146-6
https://www.boost.org/
https://doi.org/10.1145/2938503.2938515
http://arxiv.org/abs/1402.6407
http://arxiv.org/abs/1402.6407
https://doi.org/10.1145/276304.276336
https://doi.org/10.1145/304182.304201
https://doi.org/10.1145/304182.304201
https://doi.org/10.1145/2150976.2151007
https://doi.org/10.1016/j.ipl.2010.05.018
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html
https://doi.org/10.1007/s11786-017-0294-4
https://doi.org/10.1007/s11786-017-0294-4
https://doi.org/10.1145/1739041.1739071
https://doi.org/10.1145/2723372.2747642
https://doi.org/10.1109/ICDE.2014.6816675
https://doi.org/10.1109/ICDE.2014.6816675
https://doi.org/10.1145/3183713.3196911
https://doi.org/10.1109/SFCS.1989.63533
http://www.vldb.org/conf/1999/P29.pdf
http://arxiv.org/abs/1611.04705
http://arxiv.org/abs/1611.04705
http://arxiv.org/abs/1611.04705
https://doi.org/10.1016/j.is.2016.07.004
https://doi.org/10.1145/354756.354819
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1007/BF00288468
https://doi.org/10.1007/BF00288468
https://roaringbitmap.org
https://roaringbitmap.org

[32] Daniel Lemire, Gregory Ssi Yan Kai, and Owen Kaser. 2016. Consis-
tently faster and smaller compressed bitmaps with Roaring. Softw.,
Pract. Exper. 46, 11 (2016), 1547ś1569. https://doi.org/10.1002/spe.2402

[33] Daniel Lemire, Owen Kaser, and Kamel Aouiche. 2010. Sorting im-
proves word-aligned bitmap indexes. Data Knowl. Eng. 69, 1 (2010),
3ś28. https://doi.org/10.1016/j.datak.2009.08.006

[34] Daniel Lemire, Owen Kaser, and Eduardo Gutarra. 2012. Reordering
rows for better compression: Beyond the lexicographic order. ACM
Trans. Database Syst. 37, 3 (2012), 20:1ś20:29. https://doi.org/10.1145/
2338626.2338633

[35] Yinan Li, Craig Chasseur, and Jignesh M. Patel. 2015. A Padded Encod-
ing Scheme to Accelerate Scans by Leveraging Skew. In Proceedings

of the 2015 ACM SIGMOD International Conference on Management of

Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. 1509ś1524.
https://doi.org/10.1145/2723372.2737787

[36] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main
memory data processing. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD 2013, New York,

NY, USA, June 22-27, 2013. 289ś300. https://doi.org/10.1145/2463676.
2465322

[37] Roger MacNicol and Blaine French. 2004. Sybase IQ Multiplex - De-
signed For Analytics. In (e)Proceedings of the Thirtieth International

Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada, Au-

gust 31 - September 3 2004. 1227ś1230. https://doi.org/10.1016/B978-
012088469-8.50111-X

[38] GuidoMoerkotte. 1998. Small Materialized Aggregates: A LightWeight
Index Structure for Data Warehousing. In VLDB’98, Proceedings of 24rd

International Conference on Very Large Data Bases, August 24-27, 1998,

New York City, New York, USA. 476ś487. http://www.vldb.org/conf/
1998/p476.pdf

[39] J. Munro and V. Raman. 2001. Succinct Representation of
Balanced Parentheses and Static Trees. SIAM J. Comput. 31,
3 (2001), 762ś776. https://doi.org/10.1137/S0097539799364092
arXiv:https://doi.org/10.1137/S0097539799364092

[40] J. Ian Munro and Venkatesh Raman. 1997. Succinct Representation of
Balanced Parentheses, Static Trees and Planar Graphs. In 38th Annual

Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,

Florida, USA, October 19-22, 1997. 118ś126. https://doi.org/10.1109/
SFCS.1997.646100

[41] J. IanMunro, Venkatesh Raman, and Adam J. Storm. 2001. Representing
dynamic binary trees succinctly. In Proceedings of the Twelfth Annual

Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC,

USA. 529ś536. http://dl.acm.org/citation.cfm?id=365411.365526
[42] Parth Nagarkar, K. Selçuk Candan, and Aneesha Bhat. 2015. Com-

pressed Spatial Hierarchical Bitmap (cSHB) Indexes for Efficiently
Processing Spatial Range Query Workloads. PVLDB 8, 12 (2015), 1382ś
1393. http://www.vldb.org/pvldb/vol8/p1382-nagarkar.pdf

[43] Gonzalo Navarro and Eliana Providel. 2012. Fast, Small, Simple
Rank/Select on Bitmaps. In Experimental Algorithms - 11th International

Symposium, SEA 2012, Bordeaux, France, June 7-9, 2012. Proceedings.
295ś306. https://doi.org/10.1007/978-3-642-30850-5_26

[44] Patrick O’Neil and Goetz Graefe. 1995. Multi-table Joins Through
Bitmapped Join Indices. SIGMOD Rec. 24, 3 (Sept. 1995), 8ś11. https:
//doi.org/10.1145/211990.212001

[45] Patrick E. O’Neil. 1987. Model 204 Architecture and Performance. In
High Performance Transaction Systems, 2nd International Workshop,

Asilomar Conference Center, Pacific Grove, California, USA, September

28-30, 1987, Proceedings. 40ś59. https://doi.org/10.1007/3-540-51085-
0_42

[46] Patrick E. O’Neil andDallanQuass. 1997. ImprovedQuery Performance
with Variant Indexes. In SIGMOD 1997, Proceedings ACM SIGMOD

International Conference on Management of Data, May 13-15, 1997,

Tucson, Arizona, USA. 38ś49. https://doi.org/10.1145/253260.253268
[47] Ali Pinar, Tao Tao, and Hakan Ferhatosmanoglu. 2005. Compressing

Bitmap Indices by Data Reorganization. In Proceedings of the 21st

International Conference on Data Engineering, ICDE 2005, 5-8 April 2005,

Tokyo, Japan. 310ś321. https://doi.org/10.1109/ICDE.2005.35
[48] Orestis Polychroniou and Kenneth A. Ross. 2015. Efficient Light-

weight Compression Alongside Fast Scans. In Proceedings of the 11th

International Workshop on Data Management on New Hardware, Da-

MoN 2015, Melbourne, VIC, Australia, May 31 - June 04, 2015. 9:1ś9:6.
https://doi.org/10.1145/2771937.2771943

[49] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. 2007. Suc-
cinct indexable dictionaries with applications to encoding k-ary trees,
prefix sums and multisets. ACM Trans. Algorithms 3, 4 (2007), 43.
https://doi.org/10.1145/1290672.1290680

[50] Denis Rinfret, Patrick E. O’Neil, and Elizabeth J. O’Neil. 2001. Bit-Sliced
Index Arithmetic. In Proceedings of the 2001 ACM SIGMOD international

conference on Management of data, Santa Barbara, CA, USA, May 21-24,

2001. 47ś57. https://doi.org/10.1145/375663.375669
[51] Lefteris Sidirourgos and Martin L. Kersten. 2013. Column imprints: a

secondary index structure. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD 2013, New York,

NY, USA, June 22-27, 2013. 893ś904. https://doi.org/10.1145/2463676.
2465306

[52] Lefteris Sidirourgos and Hannes Mühleisen. 2017. Scaling column
imprints using advanced vectorization. In Proceedings of the 13th In-

ternational Workshop on Data Management on New Hardware, DaMoN

2017, Chicago, IL, USA, May 15, 2017. 4:1ś4:8. https://doi.org/10.1145/
3076113.3076120

[53] Rishi Rakesh Sinha and Marianne Winslett. 2007. Multi-resolution
bitmap indexes for scientific data. ACM Trans. Database Syst. 32, 3
(2007), 16. https://doi.org/10.1145/1272743.1272746

[54] The PostgreSQL Global Development Group. [n.d.]. Block Range Index
(BRIN) in PostgreSQL. https://www.postgresql.org/docs/11/brin.html.
[Online; accessed 01-Jul-2019].

[55] Sebastiano Vigna. 2008. Broadword Implementation of Rank/Select
Queries. In Experimental Algorithms, 7th International Workshop, WEA

2008, Provincetown, MA, USA, May 30-June 1, 2008, Proceedings. 154ś168.
https://doi.org/10.1007/978-3-540-68552-4_12

[56] Bo Wang, Heiner Litz, and David R. Cheriton. 2014. HICAMP bitmap:
space-efficient updatable bitmap index for in-memory databases. In
Tenth International Workshop on Data Management on New Hardware,

DaMoN 2014, Snowbird, UT, USA, June 23, 2014. 7:1ś7:7. https://doi.
org/10.1145/2619228.2619235

[57] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2017. An Experimental Study of Bitmap Compression vs.
Inverted List Compression. In Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD Conference 2017, Chicago,

IL, USA, May 14-19, 2017. 993ś1008. https://doi.org/10.1145/3035918.
3064007

[58] Sheng Wang, David Maier, and Beng Chin Ooi. 2014. Lightweight
Indexing of Observational Data in Log-Structured Storage. PVLDB 7,
7 (2014), 529ś540. http://www.vldb.org/pvldb/vol7/p529-wang.pdf

[59] J. W. J. Williams. 1964. Algorithm 232: Heapsort. Commun. ACM 7, 6
(1964), 347ś348.

[60] John Wu and Kurt Stockinger. [n.d.]. FastBit: An Efficient Compressed
Bitmap Index Technology. https://sdm.lbl.gov/fastbit/. [Online; ac-
cessed 27-May-2019].

[61] KeshengWu, Sean Ahern, EWes Bethel, Jacqueline Chen, Hank Childs,
Estelle Cormier-Michel, Cameron Geddes, Junmin Gu, Hans Hagen,
Bernd Hamann, et al. 2009. FastBit: interactively searching massive
data. In Journal of Physics: Conference Series, Vol. 180. IOP Publishing,
012053.

https://doi.org/10.1002/spe.2402
https://doi.org/10.1016/j.datak.2009.08.006
https://doi.org/10.1145/2338626.2338633
https://doi.org/10.1145/2338626.2338633
https://doi.org/10.1145/2723372.2737787
https://doi.org/10.1145/2463676.2465322
https://doi.org/10.1145/2463676.2465322
https://doi.org/10.1016/B978-012088469-8.50111-X
https://doi.org/10.1016/B978-012088469-8.50111-X
http://www.vldb.org/conf/1998/p476.pdf
http://www.vldb.org/conf/1998/p476.pdf
https://doi.org/10.1137/S0097539799364092
http://arxiv.org/abs/https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1109/SFCS.1997.646100
https://doi.org/10.1109/SFCS.1997.646100
http://dl.acm.org/citation.cfm?id=365411.365526
http://www.vldb.org/pvldb/vol8/p1382-nagarkar.pdf
https://doi.org/10.1007/978-3-642-30850-5_26
https://doi.org/10.1145/211990.212001
https://doi.org/10.1145/211990.212001
https://doi.org/10.1007/3-540-51085-0_42
https://doi.org/10.1007/3-540-51085-0_42
https://doi.org/10.1145/253260.253268
https://doi.org/10.1109/ICDE.2005.35
https://doi.org/10.1145/2771937.2771943
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1145/375663.375669
https://doi.org/10.1145/2463676.2465306
https://doi.org/10.1145/2463676.2465306
https://doi.org/10.1145/3076113.3076120
https://doi.org/10.1145/3076113.3076120
https://doi.org/10.1145/1272743.1272746
https://www.postgresql.org/docs/11/brin.html
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1145/2619228.2619235
https://doi.org/10.1145/2619228.2619235
https://doi.org/10.1145/3035918.3064007
https://doi.org/10.1145/3035918.3064007
http://www.vldb.org/pvldb/vol7/p529-wang.pdf
https://sdm.lbl.gov/fastbit/

[62] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. 2004. On the
performance of bitmap indices for high cardinality attributes. In
(e)Proceedings of the Thirtieth International Conference on Very Large

Data Bases, VLDB 2004, Toronto, Canada, August 31 - September 3 2004.
24ś35. https://doi.org/10.1016/B978-012088469-8.50006-1

[63] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. 2006. Optimizing
bitmap indices with efficient compression. ACM Trans. Database Syst.

31, 1 (2006), 1ś38. https://doi.org/10.1145/1132863.1132864
[64] Kesheng Wu, Arie Shoshani, and Kurt Stockinger. 2010. Analyses of

multi-level and multi-component compressed bitmap indexes. ACM
Trans. Database Syst. 35, 1 (2010), 2:1ś2:52. https://doi.org/10.1145/
1670243.1670245

[65] Kun-Lung Wu and Philip S. Yu. 1998. Range-Based Bitmap Indexing
for High Cardinality Attributes with Skew. In COMPSAC ’98 - 22nd

International Computer Software and Applications Conference, August

19-21, 1998, Vienna, Austria. 61ś67. https://doi.org/10.1109/CMPSAC.
1998.716637

[66] Ming-Chuan Wu and Alejandro P. Buchmann. 1998. Encoded Bitmap
Indexing for Data Warehouses. In Proceedings of the Fourteenth Interna-

tional Conference on Data Engineering, Orlando, Florida, USA, February

23-27, 1998. 220ś230. https://doi.org/10.1109/ICDE.1998.655780
[67] Jia Yu and Mohamed Sarwat. 2016. Two Birds, One Stone: A Fast, yet

Lightweight, Indexing Scheme for Modern Database Systems. PVLDB
10, 4 (2016), 385ś396. http://www.vldb.org/pvldb/vol10/p385-yu.pdf

[68] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen,
Michael Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF:
Practical Range Query Filtering with Fast Succinct Tries. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD

Conference 2018, Houston, TX, USA, June 10-15, 2018. 323ś336. https:
//doi.org/10.1145/3183713.3196931

[69] Dong Zhou, David G. Andersen, and Michael Kaminsky. 2013. Space-
Efficient, High-Performance Rank and Select Structures on Uncom-
pressed Bit Sequences. In Experimental Algorithms, 12th International

Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings. 151ś163.
https://doi.org/10.1007/978-3-642-38527-8_15

https://doi.org/10.1016/B978-012088469-8.50006-1
https://doi.org/10.1145/1132863.1132864
https://doi.org/10.1145/1670243.1670245
https://doi.org/10.1145/1670243.1670245
https://doi.org/10.1109/CMPSAC.1998.716637
https://doi.org/10.1109/CMPSAC.1998.716637
https://doi.org/10.1109/ICDE.1998.655780
http://www.vldb.org/pvldb/vol10/p385-yu.pdf
https://doi.org/10.1145/3183713.3196931
https://doi.org/10.1145/3183713.3196931
https://doi.org/10.1007/978-3-642-38527-8_15

	Abstract
	1 Introduction
	2 Tree-Encoded Bitmaps
	2.1 Compression
	2.2 Encoding
	2.3 Optimizations

	3 Operations
	3.1 Point Lookup
	3.2 Run Iterator
	3.3 Tree Scan
	3.4 Logical Operations
	3.5 Updates

	4 Experimental Analysis
	4.1 Real-World Data
	4.2 Synthetic Data

	5 Related Work
	6 Conclusion
	References

