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ABSTRACT
Analytical queries virtually always involve aggregation and sta-
tistics. SQL offers a wide range of functionalities to summarize
data such as associative aggregates, distinct aggregates, ordered-set
aggregates, grouping sets, and window functions. In this work, we
propose a unified framework for advanced statistics that composes
all flavors of complex SQL aggregates from low-level plan operators.
These operators can reuse materialized intermediate results, which
decouples monolithic aggregation logic and speeds up complex
multi-expression queries. The contribution is therefore twofold:
our framework modularizes aggregate implementations, and out-
performs traditional systems whenever multiple aggregates are
combined. We integrated our approach into the high-performance
database system Umbra and experimentally show that we compute
complex aggregates faster than the state-of-the-art HyPer system.
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1 INTRODUCTION
Users are rarely interested in wading through large query results
when extracting knowledge from a database. Summarizing data
using aggregation and statistics therefore lies at the core of ana-
lytical query processing. The most basic SQL constructs for this
purpose are the associative aggregation functions SUM, COUNT,
AVG, MIN, and MAX, which may be qualified by the DISTINCT
keyword and have been standardized by SQL-92. Given the impor-
tance of aggregation for high-performance query processing, it is
not surprising that several parallel in-memory implementations of
basic aggregation have been proposed [16, 22, 26, 32, 33].
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While associative aggregation is common, it is also quite ba-
sic. Consequently, SQL has grown considerably since the ’92 stan-
dard, obtaining more advanced statistics functionality over time. In
SQL:1999, grouping sets were introduced, which allow summariz-
ing data sets at multiple aggregation granularities simultaneously.
SQL:2003 added window functions, which compute a new attribute
for a tuple based on its neighboring rows. Window functions enable
very versatile functionality such as ranking, time series analysis,
and cumulative sums. SQL:2003 also added the capability of com-
puting percentiles (e.g., median). PostgreSQL calls this functionality
ordered-set aggregates because percentiles require (partially) sorted
data, and we use this term throughout the paper.

Advanced statistics constructs can be used in conjunction, as the
following SQL query illustrates:

WITH diffs AS (
SELECT a, b, c-lag(c) OVER (ORDER BY d) AS e
FROM R)) -- window function (lag)

SELECT a, b,
avg(e), -- associative aggregate
median(e) -- ordered -set aggregate
count(DISTINCT e), -- distinct aggregate

FROM diffs GROUP BY (a, b)

The common table expression (WITH) computes the difference of
each attribute c from its predecessor using the window function
lag. For these differences, the query then computes the average,
the median, and the number of distinct values.

Associative aggregates, ordered-set aggregates, and window
functions not only have different syntax, but also different seman-
tics and implementation strategies. For example, we usually prefer
on-the-fly hash-based aggregation for associative aggregates but
require full materialization and sorting for ordered-set aggregates
and window functions. The traditional relational approach would
therefore be to implement each of these operations as a separate re-
lational operator. However, this has two major disadvantages. First,
all implementations rely on similar algorithmic building blocks
(such as materialization, partitioning, hashing, and sorting), which
results in significant code duplication. Second, it is hard to exploit
previously-materialized intermediate results. In the example query,
the most efficient way to implement the counting of distinct dif-
ferences may be to scan the sorted output of median rather than
to create a separate hash table. An approach that computes each
statistics operator separately may therefore not only require much
code, but also be inefficient.

An alternative to multiple relational operators would be to im-
plement all the statistics functionality within a single relational
operator. This would mean that a large part of the query engine
would be implemented in a single, complex, and large code fragment.
Such an approach could theoretically avoid the code duplication and
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reuse problems, but we argue that it is too complex. Implementing a
single efficient and scalable operator is a major undertaking [24, 26]
– doing all at once seems practically impossible.

We instead propose to break up the SQL statistics functionality
into several physical building blocks that are smaller than tradi-
tional relational algebra. Following Lohman [25], we call these
building blocks low-level plan operators (LOLEPOPs). A relational
algebra operator represents a stream of tuples. A LOLEPOP, in con-
trast, may also represent materialized values with certain physical
properties such as ordering. Like traditional operators, LOLEPOPs
are composable – though LOLEPOPs often result in DAG-structured,
rather than tree-structured, plans. LOLEPOPs keep the code modu-
lar and conceptually clean, while speeding up complex analytics
queries with multiple expressions by exploiting physical proper-
ties of earlier computations. Another benefit of this approach is
extensibility: adding a new complex statistic is straightforward.

In this paper, we present the full life cycle of a query, from transla-
tion, over optimization, to execution: In Section 3, we first describe
how to translate SQL queries with complex statistical expressions to
a DAG of LOLEPOPs, and then discuss optimization opportunities
of this representation. Section 4 describes how LOLEPOPs are im-
plemented, including the data structures and algorithms involved.
In terms of functionality, our implementation covers aggregation in
all its flavors (associative, distinct, and ordered-set), window func-
tions, and grouping sets. As a side effect, our approach also replaces
the traditional sort and temp operators since statistics operators of-
ten require materializing and sorting the input data. Therefore, this
paper describes a large fraction of any query engine implementing
modern SQL (the biggest exceptions are joins and set operations).
We integrated the proposed approach into the high-performance
compiling database system Umbra [20, 28] and compare its per-
formance against HyPer [27]. We focus on the implementation of
non-spilling LOLEPOP variants, and assume that the working-set
fits into main-memory. The experimental results in Section 5 show
that our system outperforms HyPer on complex statistical queries
– even though HyPer has highly-optimized implementations for
aggregation and window functions. We close with a discussion of
related work in Section 6 and a summary of the paper in Section 7.

2 BACKGROUND
Relational algebra operators are the prevalent representation of
SQL queries. In relational systems, the life cycle of a query usually
begins with the translation of the SQL text into a tree-shaped plan
containing logical operators such as SELECTION, JOIN, or GROUP BY.
These trees of logical operators are optimized and lowered to phys-
ical operators by specifying implementations and access methods.
The physical operators then serve as the driver for query execu-
tion, for example through vectorized execution or code generation.
System designs differ vastly in this last execution step but usually
share a very similar notion of logical operators.

Database systems usually introduce at least two different opera-
tors to support the data analysis operations of the SQL standard.
The first and arguably most prominent one, is the GROUP BY opera-
tor, which computes associative aggregates like SUM, COUNT and MIN.
These aggregate functions are part of the SQL:1992 standard and
already introduce a major hurdle for query engines in form of the

optional DISTINCT qualifier. A hash-based DISTINCT implementa-
tion will effectively introduce an additional aggregation phase that
precedes the actual aggregation to make the input unique for each
group. When computing the aggregate SUM(DISTINCT a) GROUP
BY b, for example, many systems are actually computing:

SELECT sum(a)
FROM (SELECT a, b FROM R GROUP BY a, b)
GROUP BY b

Now consider a query that contains the two distinct aggregates
SUM(DISTINCT a), SUM(DISTINCT b) as well as SUM(c). If we
resort to hashing to make the attributes a and b distinct, we will
receive a DAG that performs five aggregations and joins all three
aggregates into unique result groups afterwards. This introduces a
fair amount of complexity hidden within a single operator.

Grouping sets increase the complexity of the GROUP BY operator
further as the user can now explicitly specify multiple group keys.
With grouping sets, the GROUP BY operator has to replicate the data
flow of aggregates for every key that the user requests. An easy
way out of this dilemma is the UNION ALL operator, which allows
computing the aggregates independently. This reduces the added
complexity but gives away the opportunity to share results when
aggregates can be re-grouped. For example, we can compute an
aggregate SUM(c) that is grouped by the grouping sets (a,b) and
(a) using UNION ALL as follows:

SELECT a, b, sum(c) FROM R GROUP BY a, b
UNION ALL
SELECT a, NULL , sum(c) FROM R GROUP BY a

Order-sensitive aggregation functions like median are inherently
incompatible with the previously-described hash-based aggrega-
tion. They have to be evaluated by first sorting materialized values
that are hash-partitioned by the group key and then computing the
aggregate on the key ranges. Sorting itself, however, can be signifi-
cantly more expensive than hash-based aggregation which means
that the database system cannot just always fall back to sort-based
aggregation for all aggregates once an order-sensitive aggregate
is present. The evaluation of multiple aggregates consequently in-
volves multiple algorithms that, in the end, have to produce merged
result groups. The optimal evaluation strategy heavily depends on
the function composition which presents a herculean task for a
monolithic GROUP BY operator.

The WINDOW operator is the second aggregation operator that
databases have to support. Unlike GROUP BY, the WINDOW opera-
tor computes aggregates in the context of individual input rows
instead of the whole group. That makes a hash-based solution infea-
sible even for associative window aggregates. Instead, the WINDOW
operator also hash-partitions the values, sorts them by partition
and ordering keys, optionally builds a segment tree, and finally
evaluates the aggregates for every row [24].

It is tempting to outsource the evaluation of order-sensitive ag-
gregates to this second operator that already aggregates sorted
values. Some database systems therefore rewrite ordered-set aggre-
gates into a sort-based WINDOW operator followed by a hash-based
GROUP BY. This reduces code duplication by delegating sort-based
aggregations to a single operator but introduces unnecessary hash
aggregations to produce unique result groups. For example, the



Table 1: LOLEPOPs for advanced SQL analytics. The input and output are either a tuple stream ( , ) or tuple buffer ( , ).

Operator In Out Semantics Implementation

Tr
an
sf
or
m

PARTITION Hash-partitions input Materializes hash partitions (per thread), then merges across threads
SORT Sorts hash partitions Sorts partitions with a morsel-driven variant of BlockQuicksort [14]
MERGE Merges hash partitions Merges partitions with repeated 64-way merges
COMBINE Joins unique input

on the group key
Builds partitioned hash tables aftermaterializing input. Flushesmissing groups
to local hash partitions and then rehashes between pipelines

SCAN Scans hash partitions Scans materialized hash partitions and indirection vectors

Co
m
pu

te WINDOW Aggregates windows Evaluates multiple window frames for each row
ORDAGG Aggregates sort-based Aggregates sorted key ranges. Scans twice for nested aggregates
HASHAGG Aggregates hash-based Aggregates input in fixed-size local hash tables and flushes collisions to hash

partitions, then merges partial aggregates with dynamic tables

* Traditional operators –

median of attribute a grouped by b can be evaluated with a pseudo
aggregation function ANY that selects an arbitrary group element:

SELECT b, any(v)
FROM (SELECT b,

median(a) OVER (PARTITION BY b) AS v FROM R)
GROUP BY b

We see this as an indicator that relational algebra is simply too
coarse-grained for advanced analytics since it favors monolithic ag-
gregation operators that have to shoulder too much complexity. We
further believe that this is an ingrained limitation of relational alge-
bra rooting in its reliance on (multi-)set semantics and its inability
to share materialized state between operators.

3 FROM SQL TO LOLEPOPS
In this section, we first introduce the set of LOLEPOPs for advanced
SQL analytics and describe how to derive them from SQL queries.
We then outline selected properties of complex aggregates and how
LOLEPOPs can evaluate them efficiently.

3.1 LOLEPOPs
The execution of SQL queries traditionally centers around un-
ordered tuple streams. Relational algebra operators like joins are
defined on unordered sets which allows execution engines to evalu-
ate queries without fully materializing both inputs. State-of-the-art
systems evaluate operators by processing the input tuple-by-tuple
regardless of whether the execution engine implements the Volcano-
style iterator model, vectorized interpretation or code generation
using the push model. An exception to this rule are systems that
always materialize the entire output of an operator before pro-
ceeding. This adds flexibility when manipulating the same tuples
across several operators but the inherent costs of materializing all
intermediate results by default is usually undesirable.

Our LOLEPOPs bridge the gap between traditional stream-based
query engines and full materialization by defining operators on both
unordered tuple streams and buffers. These buffers are further spec-
ified with the physical properties partitioning and ordering which
allows reusing materialized tuples wherever possible. Table 1 lists
eight LOLEPOPs that are both necessary and sufficient to compose
advanced SQL aggregates. Of these, five transform materialized
values and three compute the actual aggregates. The transform
LOLEPOPs can be thought of as utility operators that prepare the

input for the compute LOLEPOPs. For example, before one can
compute an ordered aggregate using ORDAGG, the input data has to
be partitioned and sorted. Buffers can be scanned multiple times,
which allows decomposing complex SQL analytics into consecutive
aggregations that pass materialized state between them.

For every LOLEPOP, Table 1 lists whether it produces and con-
sumes tuple streams ( , ) or tuple buffers ( , ). These input
and output types form the interface of a LOLEPOP and may be
asymmetric. For example, the PARTITION operator consumes an
unordered stream of tuples ( ) and produces a buffer that is parti-
tioned ( ). The SORT operator, on the other hand, reorders elements
in place and therefore defines input and output as buffer ( ).
Together, the two operators form a reusable building block ( )
that materializes input values and prepares them, e.g., for ordered-
set or windowed aggregation. This allows implementing complex
tasks like parallel partitioned sorting in a single code fragment and
enables more powerful optimizations on composed aggregates.

Most of the LOLEPOPs consume data from a single producer and
provide data for arbitrary many consumers. The only exception is
the operator COMBINE that joins multiple tuple streams on group
keys. The operator differs from a traditional join in a detail that
is specific to aggregation. It leverages that groups are produced at
most once by every producer to simplify the join on parallel and par-
titioned input. We deliberately use the term COMBINE distinguishing
the join of unique groups from generic sets.

We use dedicated LOLEPOPs to differentiate between hash-based
(HASHAGG) and sort-based (ORDAGG) aggregation. Many systems im-
plement these two flavors of aggregation by lowering a logical
GROUP BY operator to two physical ones. However, this choice is
very coarse-grained since the result is still a single physical opera-
tor that has to evaluate very different aggregates at once. With our
framework, database systems can freely combine arbitrary flavors
of aggregation algorithms as long as they can be defined as a LOLE-
POP. Section 3.3 discusses several examples that unveil the hitherto
dormant potential of such hybrid strategies. For example, while as-
sociative aggregates usually favor hash-based aggregation, we may
switch to sort-aggregation in the presence of an additional ordered-
set aggregate. If the required ordering is incompatible, however, it
may be more efficient to combine both, hash-based and sort-based
aggregation.
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Figure 1: Translation of a GROUP BY operator into a computation graph to construct a DAG of LOLEPOPs.

SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

3.2 From Tree to DAG
We derive the LOLEPOP plan from a computation graph that con-
nects the input values, the aggregate computations as well as vir-
tual source and sink nodes based on dependencies between them.
Figure 1 shows, from left to right, a relational algebra tree, the de-
rived computation graph, and the constructed DAG containing the
LOLEPOPs for a query that computes the three aggregates median,
average and distinct sum.

The relational algebra tree only consists of a scan, a monolithic
GROUP BY, and a projection. At first, the GROUP BY aggregates are
split up to unveil inherent dependencies of the different aggregation
functions. The average aggregate, for example, is decomposed into
the two aggregates SUM and COUNT, and a division expression. The
distinct SUM, on the other hand, is first translated into ANY aggre-
gates for arguments and keys followed by a SUM aggregate. ANY is
an implementation detail that is not part of the SQL standard. It
is a pseudo aggregation function that preserves an arbitrary value
within a group and allows, for example, to distinguish the group
keys from the unaggregated input values. Here, the attributes c and
d are aggregated with ANY, grouped by c, d to make them unique.

The resulting aggregates and expressions are connected in the
computation graph based on dependencies between them. A node
in this graph depends on other nodes if they are referenced as either
argument, ordering constraint or partitioning/grouping key. For
example, the median computation references the attributes a and d
whereas the any aggregates only depend on the attributes c and d.
LOLEPOPs offer the option to compute the median independently
of the distinct sum and then join the groups afterwards using the
COMBINE operator. This results in DAG structured plans and requires
special bookkeeping of the dependencies during the translation.

The computation graph of the example is translated into the
seven LOLEPOPs on the right-hand side of the figure. The non-
distinct aggregates in blue color are translated into the operators
PARTITION, SORT, and ORDAGG since the median aggregate requires
materializing and sorting all values anyway. The ANY aggregates,
however, differ in the group keys and are therefore inlined as
HASHAGG operator into the input pipeline. The distinct sum is com-
puted in a second HASHAGG operator and is then joined with the
non-distinct aggregates using the COMBINE operator.

The algorithm that derives these LOLEPOPs from the given com-
putation graph is outlined in Figure 2. It consists of five steps that

canonically map the aggregates to the LOLEPOP counterparts and
then optimize the resulting DAG. Step A collects sets of compu-
tations with similar group keys and constructs a single COMBINE
operator for each set respectively. These COMBINE operators implic-
itly join aggregates with the same group keys and will be optimized
out later if they turn out to be redundant. Step B then constructs
aggregate LOLEPOPs for computations within these sets. If the
query contains grouping sets, it decomposes them into aggrega-
tions with separate grouping keys and adds them to the other
aggregates attached to the combine operator. Afterwards, it divides
the aggregates based on the grouping keys of their input values
and determines favorable execution orders. In the example query,
the operator COMBINE(d) joins the aggregates MEDIAN(a), SUM(b),
COUNT(b) and SUM(DISTINCT c). The first three aggregates de-
pend on values that originate directly from the source operator
whereas SUM(DISTINCT c) depends on values that are grouped
by d, c. Among the first three, the aggregates SUM and COUNT are
associative aggregates that would favor a hash-based aggregation.
The MEDIAN aggregate, however, is an ordered-set aggregate and
requires the input to be at least partitioned. The algorithm therefore
constructs a single ORDAGG operator to compute the first three ag-
gregates and a HASHAGG operator to compute the distinct sum. Step
C introduces all transforming operators to create, manipulate and
scan buffers. In the example query, this introduces the SORT and
PARTITION operators required for ORDAGG as well as the final SCAN
operator to forward all aggregates to the sink. Step D connects
the source and sink operators and emits a first valid DAG.

Step E transforms this DAG with several optimization passes.
The goal of these optimization passes is to detect constellations
that can be optimized and to transform the graph accordingly.
In the given query, the operator COMBINE(d,c) can be removed
since there is only a single inbound HASHAGG operator. Other opti-
mizations include, for example, the merging of unbounded WINDOW
frames into following ORDAGG operators if the explicit material-
ization of an aggregate is unnecessary or the elimination of SORT
operators if the ordering is a prefix of an existing ordering. In
addition to graph transformations, these passes are also used to
configure individual operators with respect to the graph. An exam-
ple is the order in which COMBINE operators call their producers. If,
for example, a COMBINE operator joins two ordered-set aggregates
with different ordering constraints it is usually favorable to produce
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Figure 2: Algorithm to derive the LOLEPOP DAG.

the operator "closer" to the source first to enable in-place reordering
of the buffer. In general, such a favorable producer order can be
determined with a single pre-order DFS traversal starting from the
plan source. Another example, is the selection of the sorting strat-
egy in the SORT operator and the propagation of the access method
to consuming operators. Very large tuples may, for example, favor
indirect sorting over in-place sorting which has to be propagated
to a consuming ORDAGG operator.

The result is a plan of LOLEPOPs that eliminates many of the
performance pitfalls that monolithic aggregation operators will run
into. We do not claim that we always find the optimal plans for the
given aggregations but instead make sure that certain performance
opportunities are seized. We want to explore this plan search space
using a physical cost model in future research.

The algorithm translates simple standalone aggregates into
chains of LOLEPOPs. An associative aggregate with dis-
tinct qualifier, for example, is translated into the sequence
HASHAGG(HASHAGG(R)). An ordered-set aggregate is computed on
sorted input using ORDAGG(SORT(PARTITION(R))). For a window
function, we just need to replace the last operator and evaluate
WINDOW(SORT(PARTITION(R))) instead. This already hints at the
potential code reuse between the different aggregation types but
does not yet take full advantage of DAG-structured plans.

3.3 Advanced Expressions
Advanced expressions demand complex evaluation strategies. Fig-
ure 3 shows six example queries and the low-level plan.

Composed Aggregates must be split up to eliminate redun-
dancy. The SQL standard describes various aggregation functions

that can be decomposed into smaller ones. The aggregation function
VAR_POP, for example, is defined as

𝑉𝑎𝑟 (𝑥) = 1
𝑁

·
𝑁∑︁
𝑖=0

(𝑥𝑖 − 𝑥)2 = ( 1
𝑁

·
𝑁∑︁
𝑖=0

𝑥2𝑖 ) − ( 1
𝑁

·
𝑁∑︁
𝑖=0

𝑥𝑖 )2

and can be decomposed into
𝑆𝑈𝑀 (𝑥2) − 𝑆𝑈𝑀 (𝑥)2

𝐶𝑂𝑈𝑁𝑇 (𝑥)
𝐶𝑂𝑈𝑁𝑇 (𝑥) .

We have to share the aggregate computations among and within
composed aggregates, which favors a graph-like representation of
aggregates and expressions. 0 shows a query that computes the
aggregates VAR_POP(x), SUM(x), and COUNT(x). We can evaluate
all three aggregates with a single hash-based aggregation operator,
but still have to infer that SUM(x) and count(x) can be shared with
the variance computation.

Implicit joins are necessary whenever different groups need to
be served at once. This can be the result of multiple order-sensitive
and distinct aggregates or an explicit grouping operation such as
GROUPING SETS. 1 shows a query where an associative aggregate
SUM(c) is computed for the grouping sets (a), (b), and (a,b).
We can evaluate the query efficiently by inlining the grouping of
(a,b) into the input pipeline and then grouping (a,b) by (a) and
(b). Afterwards, the output of all three aggregates is joined by
(a,b) within a single hash-table. Grouping operations usually emit
complicated graphs of LOLEPOPs and cause non-trivial reasoning
about the evaluation order.

Order sensitivity has an invasive effect on the desirable plans
since it usually requires materializing and sorting the entire input.
This renders additional hash-based aggregation, which is often su-
perior for standalone aggregation, inferior to aggregating sorted
key ranges. 2 shows a query that computes two order-sensitive
aggregates MEDIAN(c) and MEDIAN(d) as well as two associative
aggregates SUM(b) and SUM(DISTINCT b). One would usually pre-
fer hash-bashed aggregation for the non-distinct sum aggregate to
exploit the associativity. In the presence of the median aggregates,
however, it is possible to compute the non-distinct sum on the same
ordered key range and thus eliminate an additional hash table. The
second median reuses the buffer of the first median and reorders
the materialized tuples by (a,d). The distinct qualifier leaves us
with the choice to either introduce two hash aggregations, grouped
by (a,c) and (a), or to reorder the key ranges again by (a,c) and
skip duplicates in ORDAGG. In this particular query, we use hash
aggregations since the runtime is dominated by linear scans over
the data as opposed to O(𝑛 log𝑛) costs for sorting. If the key range
was already sorted by (a,c), a duplicate-sensitive ORDAGG would
be preferable.

Result ordering is specified through the SQL keywords ORDER
BY, LIMIT and OFFSET and is crucial to reduce the cardinality of
the result sets. We already rely on ordered input in the WINDOW
and ORDAGG operators, which makes standalone sorting of values
a byproduct of our framework. There are only two adjustments
necessary. First, we have to support the propagation of LIMIT and
OFFSET constraints through the DAG of LOLEPOPs to stop sorting
eagerly. This can be implemented as pass through the DAG very
similar to traditional optimizations of relational algebra operators.
Additionally, we need a dedicated operator MERGE that uses repeated
k-way merges to reduce the partition count efficiently.
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0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a

1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b));

2 SELECT a, sum(b), sum(DISTINCT b), percentile_disc (0.5) WITHIN GROUP (ORDER BY c),

percentile_disc (0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a

3 SELECT row_number () OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 100

4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a

5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count (*) - 1, 0)

FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a FROM R GROUP BY b)

Figure 3: Plans for queries with aggregations that outline challenges for monolithic aggregation operators.

3 shows a query that computes thewindow function row_number
of attribute b and then sorts the results by an attribute c. The tra-
ditional approach would involve a dedicated operator on top that
materializes and sorts the scanned output of the window aggrega-
tion. We instead just reorder the already materialized tuples by the
new order constraint and eliminate the additional materialization.

Nested aggregates blur the boundary between grouped and
windowed aggregations. TheMedian Absolute Deviation (MAD), for
example, is a common measure for dispersion in descriptive statis-
tics and is defined for a set {𝑥1, 𝑥2, ..., 𝑥𝑛} as𝑀𝐸𝐷𝐼𝐴𝑁 ( |𝑥𝑖−𝑥 |) with
𝑥 = 𝑀𝐸𝐷𝐼𝐴𝑁 (𝑥). 𝑥 represents a window aggregate since 𝑥𝑖 − 𝑥

has to be evaluated for every row. The outer median, however, is an
order-sensitive grouping aggregation that reduces each group to a
single value. One would like to try to transform this expression into
a simpler form that eliminates the nested window aggregation, sim-
ilar to the aforementioned variance function. However, the nature
of the median prevents these efforts and one is forced to explicitly
(re-)aggregate 𝑥𝑖 − 𝑥 . 4 shows a query that computes this MAD
function. Our framework allows us to first compute the window
aggregate and then reorder the key ranges for a following ORDAGG
operator. This shows the power of our unified framework, which
blurs the boundary between the GROUP BY and WINDOW operators
and can reuse the materialized output of 𝑥𝑖 − 𝑥 .

Nested aggregates can also be provided by the user if the database
system accepts window aggregates as input arguments for aggre-
gation functions. The Mean Square Successive Difference (MSSD) is
defined as √︄∑𝑁−1

𝑖=0 (𝑥𝑖+1 − 𝑥𝑖 )2

𝑛 − 1
.

It estimates the standard deviation without temporal dispersion.
5 shows a query that computes the MSSD function by nesting
the window aggregate LEAD into a SUM aggregate. A typical im-
plementation would translate this query into a WINDOW operator

followed by a GROUP BY. This, however, disregards the fact that
the nested WINDOW ordering is compatible with the outer group
keys. We can instead just aggregate the existing key ranges without
further reordering using the ORDAGG operator.

3.4 Extensibility
We already mentioned a number of useful and widely-used statis-
tics that are not part of the SQL standard, and many more exist.
One advantage of our approach is that the computation graph fa-
cilitates the quick composition of new aggregation functions. We
construct the computation graph using a planner API that lets
us define nodes with attached ordering and key properties. We
then use this API in Low-Level-Functions to compose complex
aggregates through a sequence of API calls. In fact, we even im-
plement the aggregation functions defined in the SQL standard as
such Low-Level-Functions. The following example code defines
the aforementioned Mean Square Successive Difference aggregate
without explicitly implementing it in the operator logic:

def planMSSD(arg , key , ord):
f = WindowFrame(Rows , CurrentRow , Following (1))
lead = plan(LEAD , arg , key , ord , f)
ssd = plan(power(sub(lead , arg), 2))
sum = plan(SUM , ssd , key)
cnt = plan(COUNT , ssd , key)
res = plan(div(sum , nullif(sub(cnt , 1), 0)))
return res

Other complex statistical functions like interquartile range, kur-
tosis, or central moment can be implemented similarly. Further-
more, a database system can expose this API through user-defined
aggregation functions. This allows users to combine arbitrary ex-
pressions and aggregations without the explicit boundaries between
the former relational algebra operators.



for e in A:

ht1.insert(e)

for (a,b,c,d,f) in B:

for e in ht1.lookup(f):

partitions.insert(d,(a,b))

agg1.preagg ((d,c),())

partitions.shuffle ()

partitions.sort((d,a))

for (md,sum ,cnt) in partitions:

ht2[d] = (md,sum ,cnt ,NULL)

for (d,c) in agg1.merge ():

agg2.preagg(d, sum(c))

for (d,sumc) in agg2.merge ():

ht2[d][3] = sumc

for (d,md,sum ,cnt ,sumc) in ht2:

print(d,md,sum/cnt ,sumc)
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for e in A:

ht1.insert(e)

for (a,b,c,d,f) in B:

for e in ht1.lookup(f):

partitions.insert(d,(a,b))

agg1.preagg ((d,c),())

partitions.shuffle ()

partitions.sort((d,a))

for (md,sum ,cnt) in partitions:

ht2[d] = (md,sum/cnt ,NULL)

for (d,c) in agg1.merge ():

agg2.preagg(d, sum(c))

for (d,sumc) in agg2.merge ():

ht2[d][3] = sumc

for (d,md,avg ,sumc) in ht2:

print(d,md,avg ,sumc)

Figure 4: Plans and simplified code for a query that computes a median, an average, and a distinct sum of two joined relations.

4 LOLEPOP IMPLEMENTATION
In this section, we describe how the framework affects the code
generation in our database system Umbra. We further introduce the
data structures used to efficiently pass materialized values and out-
line the implementation of the LOLEPOPs PARTITION and COMBINE
as well as the ORDAGG, HASHAGG, and WINDOW operators.

4.1 Code Generation
Umbra follows the producer/consumer model to generate efficient
code for relational algebra plans [20, 27, 28]. In this model, operator
pipelines are merged into compact loops to keep SQL values in CPU
registers as long as possible. More specifically, code is generated by
traversing the relational algebra tree in a depth-first fashion. By im-
plementing the function produce, an operator can be instructed to
recursively emit code for all child operators. The function consume
is then used in the inverse direction to inline code of the parent
operator into the loop of the child. Operators are said to launch
pipelines by generating compact loops with inlined code of the
parent operators and break pipelines by materializing values as
necessary.

Figure 4 illustrates the code generation for a query that first joins
two relations A and B and then computes the aggregates median,
average, and distinct sum. The coloring indicates which line in the
pseudocode was generated by which operator. On the left-hand
side of the figure, the scan of the base relation B is colored in
red and only generates the outermost loop of the second pipeline.
The join is colored in orange and inlines code building a hash
table into the first pipeline as well as code probing the hash table
into the second pipeline. Both operators integrate seamlessly into
the producer/consumer model since the generated loops closely
match the unordered (multi-)sets at the algebra level. The group by
operator, on the other hand, bypasses themodel almost entirely. The
code in yellow color partitions and sorts all values for the median
and average aggregates and additionally computes the distinct sum
via two hash aggregations. In contrast to the scan and join operators,
most of this code is generated in between the unordered input and
output pipelines since the aggregation logic primarily manipulates
materialized values.

Our framework breaks this monolithic aggregation logic into
a DAG of LOLEPOPs. Within the producer/consumer model, a
LOLEPOP behaves just like every other operator with the single
exception that it does not necessarily call consume on the parent
operator. Instead, multiple LOLEPOPs can manipulate the same
tuple buffer via code generated in the produce calls.

These derived DAG that roots in the two outgoing edges of the
former join operator. The producer/consumermodel supports DAGs
since we can inline both consumers of the join (the PARTITION and
HASHAGG operators) into the loop of the input pipeline. The only
adjustment necessary is to substitute the total order among pipeline
operators with a partial order modeling the DAG structure. Our
framework further unveils pipelines that have been hidden within
the monolithic translation code. The output of the ORDAGG and
the two HASHAGG operators represent unordered sets that can now
be defined as pipelines explicitly. The dashed edges between the
operators indicate passed tuple buffers as opposed to the solid edges
for pipelines. In this example, data is passed implicitly between
the operators PARTITION, SORT, and ORDAGG through the variable
partitions. This lifts the usual limitation to only pass tuples in
generated loops and allows us to compose buffer modifications.

In the example, the code that is generated through LOLEPOPs
equals the code generated by the monolithic aggregation operator.
This underlines that LOLEPOPs are not fundamentally new ways to
evaluate aggregates but serve as more fine-granular representation
that better matches the modular nature of these functions.

4.2 Tuple Buffer
The tuple buffer is a central data structure that is passed between
multiple LOLEPOPs and thereby allows reusing intermediate results.
Our tuple buffer design is driven by the characteristics of code
generation as well as the operations that we want to support. First,
the code generated by the producer-consumer model ingests data
into the buffer on a tuple-by-tuple fashion. We also do not want to
rely on cardinality estimates, which are known to be inaccurate [23].
Yet, we want to avoid relocating materialized tuples whenever
possible. This favors a simple list of data chunks with exponentially
growing chunk sizes as the primary way to represent a buffer



Iterator Logic

emit("while #{it != end }:")

emit(" #{s = {}; g = it.keys ()}")

emit(" while #{++it != end && it.keys() == g}:")

emit(" #{ combine(s, it.values ())}")

emit(" #{ consumer.consume(s)})

Figure 5: Tuple buffer and translator code that accesses sorted key ranges through iterator abstraction at query compile time.

partition. Second, we prefer a row-major storage layout for the tuple
buffer. Our system implements a column-store for relations but
materializes intermediate results as rows to simplify the generated
attribute access. This will particularly benefit the SORT operator
since it makes in-place sorting more cache-efficient.

However, in-place sorting also becomes inefficient with an in-
creasing tuple size since the overhead of copying wide tuples over-
shadows the better cache efficiency. A common alternative is to
sort a vector of pointers (or tuple identifiers) instead. These indi-
rection vectors suffer from scattered memory accesses, but feature
a constant entry size that will be beneficial once tuples get larger.
This contrast leads to tradeoff between cache efficiency and robust-
ness which oftentimes favors the latter. We instead combine the
best of both worlds by introducing a third option that we call the
permutation vector. A permutation vector is a sequence of entries
that consist of the original tuple address followed by copied key
attributes. This preserves the high efficiency of key comparisons
in the operators SORT, ORDAGG, and WINDOW at the cost of a slightly
more expensive vector construction.

Figure 5 shows a chunk list , a permutation vector , and a
hash table of a single tuple buffer partition. The right-hand side
of the figure lists an exemplary translation code for the ORDAGG
operator. The code generates a loop over a sequence of tuples that
aggregates key ranges and passes the results to a consumer. Keys
and values are loaded through an iterator logic that abstracts the
buffer access at query compile time. This way, the operator does
not need to be aware of either chunks or permutation vectors but
can instead rely on the iterator to emit the appropriate access code.

4.3 Aggregation
The framework uses the three aggregation operators ORDAGG,
WINDOW, and HASHAGG. In Figure 5, we already outlined the ORDAGG
operator, which generates compact loops over sorted tuples and
computes aggregates without materializing any aggregation state.
We use the ORDAGG operator whenever our input is already sorted
since it spares us explicit hash tables. We further use ORDAGG to ef-
ficiently evaluate nested aggregates such as SUM(x - MEDIAN(x)).
Since all values are materialized, ORDAGG can compute the nested
aggregates by scanning the key range repeatedly. Traditional op-
erators are here forced to write back the result of the median into
every single row and then compute the outer aggregate using a
hash join. The LOLEPOPs therefore not only spare us the hash
tables but also the additional result field which will positively affect
the sort performance.
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Figure 6: Two-phase hash aggregation with two threads. The
hash tables on the left are fixed in size while the hash tables
in green grow dynamically.

The second aggregation operator is WINDOW. Algorithmically, its
implementation closely follows the window operator described by
Leis et al. [24]: Within our DAG, however, the materialization, par-
titioning and sorting of values is delegated to other LOLEPOPs and
is no longer the responsibility of the WINDOW operator. Instead, the
operator begins with computing the segment trees for every hash
partition in parallel. Afterwards, it evaluates the window aggre-
gates for every row and reuses the results between window frames
wherever possible. We additionally follow the simple observation
that segment trees can be computed for many associative aggre-
gates at once, independent of their frames, as long as they share
the same ordering. A single WINDOW operator therefore computes
multiple frames in sequence to share the segment aggregation and
increase the cache-efficiency.

The third aggregation operator, HASHAGG, is illustrated in Fig-
ure 6. HASHAGG adopts a two-phase hash aggregation [22, 33]. We
first consume tuples of an incoming pipeline and compute partial
aggregates in fixed-size thread-local hash tables. These first hash
tables use chaining, and we allocate its entries in a thread-local
partitioned tuple buffer. However, we do not maintain the hash
table entries in linked lists, but instead simply replace the previous
entry whenever the group keys differ. This will effectively produce
a sequence of partially aggregated non-unique groups that have
to be merged afterwards. The efficiency of this operator roots in
the ability to pre-aggregate most of its input in these local hash
tables that fully reside in the CPU caches. That means that if the
overall number of groups is small or if group keys are not too



spread out across the relation, most of the aggregate computations
will happen within this first step, which scales very well. After-
wards, the threads merge their hash partitions into a large buffer
by simply concatenating the allocated chunk lists. These hash par-
titions are then assigned to individual threads and merged using
dynamically-growing hash tables.

4.4 Partitioning
The PARTITION operator consumes an unordered tuple stream and
produces a tuple buffer with a configurable number of, for exam-
ple, 1024 hash partitions. Every single input tuple is hashed and
allocated within a thread-local tuple buffer first. Once the input
is exhausted, the thread-local buffers are merged across threads
similar to the merging of hash partitions in the HASHAGG operator.
Afterwards, the partition operator checks whether any of the fol-
lowing LOLEPOPs has requested to modify the buffer in-place. If
that is the case, the partition operator compacts the chunk lists
into a single chunk per partition. We deliberately introduced this
additional compaction step to simplify the buffer modifications. The
alternative would have been to implement all in-place modifications
in a way that is aware of chunk-lists. This is particularly tedious
for algorithms like sorting and also makes the generated iterator
arithmetic in operators like WINDOW and ORDAGG more expensive.

4.5 Combine
The COMBINE operator joins unique groups on their group keys. Con-
sider, for example, a query that pairs a distinct with a non-distinct
aggregate. Both aggregates are computed in different HASHAGG
LOLEPOPs but need to be served as single result group. The
COMBINE operator joins an arbitrary number of input streams with
the assumption that these groups are unqiue. We simply check for
every incoming tuple whether a group with the given key already
exists. If it is, we can just update the group with the new values and
proceed. Otherwise, we materialize the group into a thread-local
tuple buffer. After every pipeline, the COMBINE operator merges
these local buffers and rehashes the partitions if necessary.

5 EVALUATION
In this section, we experimentally evaluate the planning and exe-
cution of advanced SQL analytics in Umbra using LOLEPOPs. We
first compare the execution times of advanced analytical queries
with Hyper, a database system that implements aggregation using
traditional relational algebra operators. We then analyze the impact
of aggregates on five TPC-H queries with a varying number of joins.
Additionally, we show the performance characteristics of certain
LOLEPOPs based on four execution traces. Our experiments have
been performed on an Intel Core i9-7900X with 10 cores, 128 GB of
main memory, LLVM 9, and Linux 5.3.

5.1 Comparison with other Systems
We designed a set of queries to demonstrate the advantages of our
framework over monolithic aggregation operators. We chose the
main-memory database system HyPer as reference implementation
for traditional aggregation operators since it also employs code gen-
eration with the LLVM framework for best-of-breed performance in
analytical workloads. The design of Umbra shares many similarities

Table 2: Execution times in seconds of queries with simple
aggregates in HyPer, PostgreSQL and MonetDB.

Query HyPer PgSQL MonetDB
SUM(q) GROUP BY k 0.50 4.03 0.64
SUM(q) GROUP BY ((k,n),(k)) 0.55 42.31 4.77
PCTL(q,0.5) GROUP BY k 0.89 32.96 10.19
ROW_NUMBER() PARTITION BY k
ORDER BY q

0.87 26.58 10.36

n=linenumber q=quantity k=suppkey

with HyPer besides the query engine which allows for a fair com-
parison of the execution times. Both systems rely on Morsel-Driven
Parallelization [22] and compile queries using LLVM [27].

The database systems PostgreSQL and MonetDB were excluded
due to their lacking performance for basic aggregates. The following
table compares the execution times betweenHyPer, PostgreSQL and
MonetDB for an associative aggregate, an ordered-set aggregate
and a window function as well as for grouping sets with two group
keys. Our queries represent complex and composed versions of
these aggregates and will increase the margin between the systems
further.

The experiment differs from benchmarks such as TPC-H or TPC-
DS in that the queries are not directly modeling a real-world in-
teraction with the database. We instead define queries that only
aggregate a single base table without further join processing. We
focus on the relation lineitem of the benchmark TPC-H since it is
well-understood and may serve as placeholder for whatever ana-
lytical query precedes. This does not curtail our evaluation since
those operators usually form the very top of query plans and any
selective join would only reduce the pressure on the aggregation
logic. Our performance evaluation comprises 18 queries across five
different categories. Table 3 shows the execution times using Umbra
and HyPer with 1 and 20 threads and the factors between them.

Queries 1, 2, and 3 provide descriptive statistics for the single
attribute extendedprice with a varying number of aggregation
functions. The aggregates in all three queries have to be optimized
as a whole since they either share computations or favor different
evaluation strategies. Query 2 presents a particular challenge for
monolithic aggregation operators since the function percentile
(PCTL) is not associative. The associative aggregates SUM, COUNT,
and VAR_SAMP can be computed on unordered streams and can be
aggregated eagerly in thread-local hash tables. Non-associative
aggregates like PCTL, on the other hand, require materialized in-
put that is sorted by at least the group key. HyPer delegates this
computation to the Window operator and computes the associa-
tive aggregates using a subsequent hash-based grouping. Umbra
computes all aggregates on the sorted key range using the ORDAGG
operator, which spares us the hash tables.

Queries 4, 5, 6, and 7 target the scalability of ordered-set ag-
gregates. All four queries are dominated by the time it takes to
sort the materialized values and therefore punish any unnecessary
reorderings. The databases have to optimize the plan with respect
to the ordering constraints to eliminate redundant work in query
5 and 6. Query 7 additionally groups by the attribute linenumber
which contains only seven distinct values across the relation. HyPer



Table 3: Execution times in seconds for advanced SQL queries on the TPC-H lineitem table (scale factor 10).

1 thread 20 threads

# Aggregates Umbra HyPer × Umbra HyPer ×

Si
ng

le

1 SUM(e), COUNT(e), VAR_SAMP(e) GROUP BY k 3.10 4.73 1.53 0.37 0.60 1.62
2

↰

, PCTL(e,0.5) GROUP BY k 4.32 9.36 2.17 0.47 0.96 2.03
3 COUNT(e), COUNT(DISTINCT e) GROUP BY k 9.61 127.63 13.28 1.21 26.52 21.90

O
rd
er
ed
-S
et 4 PCTL(e,0.5) GROUP BY k 4.00 8.88 2.22 0.43 0.92 2.14

5

↰

, PCTL(e,0.99) GROUP BY k 4.02 12.66 3.15 0.42 1.40 3.31
6

↰

, PCTL(q,0.5), PCTL(q,0.9) GROUP BY k 6.48 22.39 3.46 0.64 2.68 4.20
7 PCTL(e,0.5), PCTL(q,0.5) GROUP BY n 6.74 21.93 3.25 0.93 19.85 21.36

G
ro
up

in
g-
Se
ts 8 SUM(q) GROUP BY ((k,n),(k),(n)) 2.30 10.73 4.66 0.28 1.09 3.96

9 SUM(q) GROUP BY ((k,s,n),(k,s),(k,n),(n)) 2.63 16.37 6.22 0.42 1.71 4.09
10 PCTL(q,0.5) GROUP BY ((k,n),(k)) 2.43 18.11 7.46 0.24 1.85 7.56
11 PCTL(q,0.5) GROUP BY ((k,s,n),(k,s),(k)) 2.77 27.78 10.05 0.31 2.89 9.44
12 PCTL(q,0.5) GROUP BY ((k,n),(k),(n)) 1.97 26.60 13.50 0.52 10.43 20.20

W
in
do

w 13 LEAD(q), LAG(q) PARTITION BY k ORDER BY r 8.33 13.69 1.64 0.97 1.46 1.50
14

↰

, CUMSUM(q) PARTITION BY k ORDER BY d 12.77 19.05 1.49 1.56 2.27 1.46
15 CUMSUM(q) PARTITION BY n ORDER BY d 5.10 12.32 2.42 0.89 10.93 12.29

N
es
te
d 16 PCTL(e - PCTL(e,0.5),0.5) GROUP BY k 6.35 12.39 1.95 0.69 1.44 2.07

17 PCTL(SUM(q), 0.5) GROUP BY k 1.58 4.08 2.58 0.20 0.52 2.62
18 SUM(POW(LEAD(q) - q,2)) / COUNT(*) GROUP BY k 5.63 10.90 1.94 0.58 1.09 1.89

e=extendedprice n=linenumber s=linestatus o=orderkey p=partkey
q=quantity r=receiptdate k=suppkey d=shipdate m=shipmode

does not to sort partitions in parallel and is therefore considerably
slower when scaling to 20 threads.

Queries 8, 9, 10, 11, and 12 analyze grouping sets that introduce
a significant complexity in the aggregation logic by combining dif-
ferent group keys. This offers potential performance gains through
reaggregation of associative aggregates and stresses the impor-
tance of optimized sort orders. HyPer only supports grouping sets
by computing the different groups independently and combining
the results using UNION ALL. With LOLEPOPs, we instead start
grouping by the longest group keys first and then reaggregate
key prefixes whenever necessary. In query 8, for example, we first
group by (suppkey, linenumber) and then reaggregate the results
by suppkey afterwards. Queries 10, 11, and 12 use the percentile
function and emphasize the sort optimizations of our framework.
We compute the queries 10 and 11 efficiently on a single buffer that is
partitioned by attribute suppkey. We reorder the buffer by the con-
straints arranged in decreasing lengths, i.e., (suppkey, linenumber,
quantity) followed by (suppkey, quantity) for query 10. Query
12 adds (linenumber) as additional group key which will again
penalize systems that sort key ranges in a single-threaded fashion.

Queries 13, 14, and 15 target the scaling (in terms of number
of expressions) of window queries. Query 13 combines the two
window functions LEAD and LAG that can be evaluated on the same
key ranges. Query 14 adds a cumulative sum on a different ordering
attribute which favors an efficient reordering of the previous key
range. Query 15 partitions by linenumber again to underline the
importance of parallel sorting for all flavors of ordered aggregation.

Queries 16, 17, and 18 compose complex aggregates fromwindow
and grouping aggregates. Query 16 computes the Median Absolute

Deviation (MAD) function that we described as advanced aggre-
gate in Section 3.3. It first computes a median𝑚 of the attribute
extendedprice as window aggregate and then reorders the buffer
to compute the median of (extendedprice−𝑚) as ordered-set ag-
gregate. With LOLEPOPs, we can explicitly reorder the partitioned
buffer by the first computed median aggregate and then compute
the second median with a ORDAGG operator. Query 18 computes the
also aforementioned function Mean Square Successive Difference
(MSSD) that sums up the square difference between the window
function LEAD and a value. This time, we do not need to reorder
values but can directly compute the result on the sorted key range
using ORDAGG. They query also shows that the performance of tra-
ditional aggregation operators is sometimes saved by coincidence
due to almost-sorted tuple streams. In HyPer, the WINDOW operator
streams the key ranges to the hashing GROUP BY almost in order,
improving the effectiveness of thread-local pre-aggregation.

In summary, these 18 queries show scenarios that occur in real-
world workloads and already profit from the optimizations on a
DAG of LOLEPOPs. These optimizations are quite difficult to imple-
ment in relational algebra, but can be broken up into composable
blocks with LOLEPOPs.

5.2 Advanced Aggregates in TPC-H
We next analyze the performance impact of advanced aggregates on
TPC-H. Figure 7 shows the execution times of the TPC-H queries
4, 5, 7, 10, and 12 with and without additional aggregates at scale
factor 10. The modifications of the individual queries only consist of
up to two additional ordered set aggregates with different orderings
or a prefix of the group key as additional grouping set.
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Figure 7: Execution times of five TPC-H queries at scale factor 10 with and without additional aggregates.

Query 5 and 7 contain five joins that pass only few tuples to the
topmost GROUP BY operator. Both queries are dominated by join
processing and the additional ordered-set aggregates, percentiles
of l_quantity and l_discount, have an insignificant effect on
the overall execution times. Yet, the additional grouping by either
n_name or l_year doubles the execution times in HyPer since the
joins are duplicated using UNION ALL. This suggests that, even
without Low-Level-Plan operators, a system should at least intro-
duce temporary tables to share thematerialized join output between
different GROUP BY operators.

Query 4 only contains a single semi join that filters 500,000
tuples of the relation orders. This increases the pressure on
the aggregation logic which results in a slightly faster execu-
tion with Low-Level-Plan operators. These differences are further
pronounced in the modified queries computing additional per-
centiles of o_totalprice and o_shippriority and grouping by
o_orderstatus. Query 12 behaves very similar to query 4 and
aggregates 300,000 tuples. HyPer is slightly faster when comput-
ing the original aggregates but loses when adding the percentiles
l_quantity and l_discount or grouping by l_linestatus.

Query 10 aggregates over one million tuples produced by three
joins and is also slightly faster in HyPer. However, Umbra outper-
forms HyPer by a factor of almost twowhen additionally computing
the percentiles l_quantity and l_discount. This is attributable
to the high number of large groups that are accumulated by the
aggregation operator. The aggregation yields over 300,000 groups
that are reduced with a following top-k filter. As a result, traditional
hash-based aggregation suffers from the cache-inefficiency of larger
hash tables. Umbra loses slightly against HyPer when computing
the single sum but wins as soon as the ordered-set aggregates can
eliminate the hash aggregation entirely.

The experiment demonstrates that minor additions to the well-
known TPC-H queries such as adding a single ordered-set aggregate
or appending a grouping set suffice to unveil the inefficiencies
of monolithic aggregation operators. It also shows that queries
may very well be dominated by joins, leaving only insignificant
work for a final summarizing aggregation operator. In such cases,
the efficiency of the aggregation is almost irrelevant which is not
changed by introducing LOLEPOPs.

5.3 LOLEPOPs in Action
In a next step, we illustrate the different performance character-
istics of LOLEPOPs based on two different example queries. Both

2: sum(q), var_samp(q), median(q - median(q)) group by k

1: sum(q) group by ((k,n),(k),(n))
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Figure 8: Execution traces of two queries on the TPC-H
schema at scale factor 0.5 with four threads and 16 buffer
partitions.

queries target the relation lineitem of TPC-H. We execute the
queries at scale factor 0.5 with four threads and reduce the number
of partitions in tuple buffers to 16 to make morsels graphically
distinguishable. Figure 8 shows precise timing information about
the morsels being processed.

Query 1 computes the aggregate SUM grouped by the group-
ing sets (suppkey, linenumber), (suppkey), and (linenumber). It
is significantly faster than the second query although it groups the
input using three different HASHAGG operators. Umbra computes
these grouping sets efficiently by pre-aggregating the 3 million
tuples of the first scan pipeline by (suppkey, linenumber). The
second pipeline then merges these partial aggregates into 35,000
groups using dynamic hash tables for each of the 16 partitions. The
third pipeline scans the results afterwards, re-aggregates them by
suppkey and linenumber, and passes them to the COMBINE opera-
tor. All remaining pipelines are barely visible since they operate on
only a few tuples. The plan of this query corresponds to query 1
in Figure 3.

Query 2 computes the associative aggregates SUM and VAR_SAMP,
as well as the Median Absolute Deviation that was introduced
as advanced aggregate in Section 3. We include it as execution
trace in this experiment to illustrate the advantages of sharing
materialized state between operators. Umbra evaluates this query
by computing the nested median as window expression and then
reordering the results in place. In contrast to the previous query,



the first pipeline is now faster since it only materializes the tuples
into 16 hash partitions. Thereafter, the compaction merges the
chunk list of each hash partition into single chunks that enable the
in-place modifications. The fourth pipeline represents the window
operator that computes the median for every key range and stores
the result in every row. The following pipeline then reorders the
partitioned buffer by this median value. It is significantly faster
than the first sort since the hash partitions are already sorted by
the key. The last pipeline then iterates over the sorted key-ranges
and computes the three aggregates at once.

6 RELATEDWORK
Research on optimizing in-memory query processing on modern
hardware has been growing in the past decade. However, in compar-
ison to joins [1–7, 17, 21, 34], work on advanced statistics operators
is relatively sparse. Efficient aggregation is described by a num-
ber of papers [16, 22, 26, 32, 33]. However, these papers omit to
discuss how to implement DISTINCT aggregates, which are sig-
nificantly more complicated than simple aggregates, in particular,
when implemented using hashing. There is even less work on win-
dow functions: The papers of Leis et al. [24] and Wesley et al. [36]
are the only one that describe the implementation of window func-
tions in detail. Cao et al. [9] present query optimization techniques
for queries with multiple window functions (e.g., reusing existing
partitioning and ordering properties), which are also applicable
and indeed are directly enabled by our approach. Except for Xu
et al. [37], much work on optimizing sort algorithms for modern
hardware [10, 14] has focused on small tuple sizes. Grouping sets
have been proposed by Gray et al. [19] in 1997, and consequently
there have been many proposals for optimizing the grouping or-
der: Phan and Michiardi’s [30] fairly recent paper offers a good
overview. We are not aware of any research papers describing how
to efficiently implement ordered-set aggregates in database systems.
Even more importantly, all these papers focus on a small subset of
the available SQL functionality and do not discuss how to efficiently
execute queries that contain multiple statistical expressions like
the introductory example in Section 1. Given the importance of
statistics for data analytics, this paper fills this gap by presenting
a unified framework that relies on many of the implementation
techniques found in the literature.

Our approach uses the notion of LOw-LEvel Plan OPerators
(LOLEPOP), which was proposed in 1988 by Lohman [25] and is it-
self based on work by Freytag [18]. According to them, a LOLEPOP
may either be a traditional relational operator (e.g., join or union) or
a low-level building block (e.g., sort or ship). The result of a LOLE-
POP may either be a buffer or a stream of tuples. Furthermore, a
LOLEPOP may have physical properties such as an ordering. A con-
cept similar to LOLEPOPs was very recently described by Dittrich
and Nix [13], who focus on low-level query optimizations. They
introduce the concept of Materialized Algorithmic Views (MAVs),
that represent materialized results at various granularity levels in
the query plan. We understand our LOLEPOPs to be an instantia-
tion of MAVs at a granularity that is slightly lower than relational
algebra. Our framework further represents aggregates as directed
acyclic graphs and therefore might benefit from existing research
on parallel dataflows [15]. There are also some similarities with

low-level algebras [29, 31] and compilation frameworks [8, 11, 12].
However, these papers generally focus on simple select-project-join
queries and on portability across heterogeneous hardware, but do
not discuss how to translate and execute complex statistical queries.

The optimization of query plans with respect to interesting sort
orders dates back to a pioneering work of Selinger et al. [35]. They
consider a sort order interesting if it occurs in GROUP BY or ORDER BY
clauses or if it is favored by join columns. These sort orders are then
included during access path selection, for example, to introduce
merge joins for orders that are required anyway. AWS Redshift is a
distributed commercial system that uses interesting orders to break
up certain aggregations at the level of relational algebra operators.
Redshift introduces the operator GroupAggregate that consumes
materialized tuples from a preceding Sort operator to compute
ordered-set aggregates more efficiently. Our system generalizes this
idea and performs access path selection with interesting orderings
and partitionings to derive LOLEPOPs for all kinds of complex
aggregation functions.

7 SUMMARY AND FUTUREWORK
The SQL standard offers a wide variety of statistical functionalities,
including associative aggregates, distinct aggregates, ordered-set
aggregates, grouping sets, and window functions. In this paper
we argue that relational algebra operators are not well suited for
expressing complex SQL queries with multiple statistical expres-
sions. Decomposing complex expressions into independent rela-
tional operators may lead to sub-optimal performance because
query execution is generally derived directly from this execution
plan. We instead propose a set of low-level plan operators (LOLE-
POPs) for SQL-style statistical expressions. LOLEPOPs can access
and transform buffered intermediate results and, thus, allow reusing
computations and physical data structures in a principled fashion.
Our framework subsumes the sort-based and hash-based aggrega-
tion as well as several non-statistical SQL constructs like ORDER
BY and WITH. We presented our LOLEPOP implementations and
integrated our approach into the high-performance database sys-
tem Umbra. The experimental comparison against the HyPer shows
that LOLEPOPs improve the performance of queries with complex
aggregates substantially. However, the proposed building blocks
are also applicable to other query engine types, for example to
vectorized engines. We also believe that our approach leads to more
modular and maintainable code. The paper describes a canonical
translation based on heuristic optimization rules. It would be inter-
esting to investigate cost-based optimization strategies to further
improve the plan quality. Our system Umbra further assumes that
the working set fits into main memory which may no longer hold
when scaling to multiple machines in the cloud. We want to ex-
plore the evaluation of advanced aggregates in a distributed setting
and with constrained memory sizes, for example by dynamically
switching between spilling and non-spilling LOLEPOP variants.
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