
To Partition, or Not to Partition,
That is the JoinQuestion in a Real System

Maximilian Bandle
bandle@in.tum.de

Technische Universität München

Jana Giceva
jana.giceva@in.tum.de

Technische Universität München

Thomas Neumann
neumann@in.tum.de

Technische Universität München

ABSTRACT
An efficient implementation of a hash join has been a highly re-
searched problem for decades. Recently, the radix join has been
shown to have superior performance over the alternatives (e.g., the
non-partitioned hash join), albeit on synthetic microbenchmarks.
Therefore, it is unclear whether one can simply replace the hash
join in an RDBMS or use the radix join as a performance booster for
selected queries. If the latter, it is still unknown when one should
rely on the radix join to improve performance.

In this paper, we address these questions, show how to inte-
grate the radix join in Umbra, a code-generating DBMS, and make
it competitive for selective queries by introducing a Bloom-filter
based semi-join reducer. We have evaluated how well it runs when
used in queries from more representative workloads like TPC-H.
Surprisingly, the radix join brings a noticeable improvement in
only one out of all 59 joins in TPC-H. Thus, with an extensive
range of microbenchmarks, we have isolated the effects of the most
important workload factors and synthesized the range of values
where partitioning the data for the radix join pays off. Our analysis
shows that the benefit of data partitioning quickly diminishes as
soon as we deviate from the optimal parameters, and even late
materialization rarely helps in real workloads. We thus, conclude
that integrating the radix join within a code-generating database
rarely justifies the increase in code and optimizer complexity and
advise against it for processing real-world workloads.
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Figure 1: Relative performance of Bloom-filtered parti-
tioned and non-partitioned hash join for every join of TPC-
H SF 100 labeled as Q⟨𝑖𝑑⟩-J⟨𝑜𝑟𝑑𝑒𝑟 ⟩

1 INTRODUCTION
Architectural changes in modern processors have inspired a signifi-
cant amount of research on finding the optimal join implementa-
tion. Over the years, the community has reached the conclusion
that hash joins are better than sort-merge joins [3, 17], and that
in general algorithm implementations should be tuned to the un-
derlying hardware (i.e., be hardware conscious rather than oblivi-
ous) [4, 27, 32, 40].

Recent comprehensive studies have advised that the partitioned
radix join performs better than the non-partitioned hash join [4, 40].
What is unclear, however, is if the radix join should completely
replace the hash join as amajorworkhorse in the database engine, or
if it should be used as a performance booster. The former is unlikely,
as the radix-partitioning phase is only needed when the build side
does not naturally fit into the caches; otherwise, the extra pass
over the data and the necessary data materialization comes with
a non-negligible overhead. The latter is a more difficult question.
Using the radix-join as a booster implies that we should know when
to use it. Unfortunately, existing research has only evaluated the
performance of the two on synthetic microbenchmarks, which are
not representative of what we typically get in real workloads.

In this work, we investigate how to best integrate the state-of-the-
art radix join algorithm in a compiling main-memory DBMS and
when to use it instead of the non-partitioned hash join. Our radix
join performance is comparable to prior work’s stand-alone imple-
mentations while also supporting all variants of equi-joins, includ-
ing outer-, mark-, semi-, and anti-joins [33]. All query plans can use
it as a drop-in replacement for the non-partitioned hash join used
otherwise. Our system does data-centric query compilation [32]
and applies relaxed operator fusion, which enables software-based

https://doi.org/10.1145/3448016.3452831
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prefetching [27]. This allows us to make a comprehensive compari-
son between the two join implementations in a much broader scope
of workloads and factors than the analysis done by prior work.
More specifically, we do the following:
Compare the hash joins in a system-wide setup: All joins un-
der testing are integrated and tested within a compiling in-memory
DBMS. Both the partitioned and the non-partitioned join are state
of the art and hardware-conscious, using optimizations such as
software-prefetching, software-write combining, and non-temporal
stores [5].
Evaluate the holistic impact of the join on query execution:
Existing work compares the joins in isolation and simplifies the
settings by relying on materialized input data or omitting result
materialization by merely counting the matching tuples [4, 16, 40].
Unfortunately, these simplifications cannot always be applied as
joins appear in many stages of query execution. By integrating the
joins within a full DBMS, we also investigate their implicit effects
on the entire execution of a query.
Use representative datasets: In contrast to prior work that only
considered narrow tuples (8–16 bytes) [47] and dense data-distribu-
tions [16, 40], we use the TPC-H benchmark for our performance
evaluation (c.f., Figure 1). As shown in Figure 2, the TPC-H queries
operate on a more extensive range of selectivities and tuple sizes.

To our surprise, despite the encouraging microbenchmark re-
sults from prior work, the optimized radix join [4, 40] was not
competitive in the TPC-H benchmark. When analyzing the joins,
we noticed that for most queries the majority of the shuffled tuples
in the partitioning phase might not even be present in the final
result (cf. Figure 2). Therefore, we introduced a filter for the probe
phase that drops tuples as early as possible to save computation
time and reduce unnecessary materialization overhead.

While this optimization makes the radix join more competitive,
it provides measurable benefits in merely one of 59 equi-joins con-
tained in the TPC-Hworkload (cf. Figure 1). By further investigation
through a series of microbenchmarks we discovered that the bene-
fits of the radix join diminish quickly when one of the workload’s
characteristics (e.g., payload size, data distribution, materialization
strategy, join selectivity, etc.) deviates from the optimum. In fact,
we can barely achieve any benefit for non-optimal cases.

This paper makes the following key contributions:
• We fully integrate the radix join into a main-memory DBMS. To
the best of our knowledge, this is the first implementation of a
radix join in a DBMS, using data-centric code generation [15].
• We embed a Bloom-filtered semi-join reducer that significantly
reduces materialization overhead for queries with medium and
high selectivity.

• We compare our radix join implementation and the Bloom-filtered
versionwithin Umbra [13] against a state-of-the-art hash join [18,
21, 27] using the TPC-H benchmark.
• With extensive microbenchmarks, we synthesize the range of
values for the workload characteristics needed to observe any
performance benefits when using the radix join.

Following on the insights from our extensive evaluation, we express
serious reservations to implementing the radix join. Its usage as a
booster is limited to a small set of workloads and thus rarely justifies
the increase in code- and optimizer-complexity.

2 RELATEDWORK
The majority of papers agree that in-memory hash joins are faster
than sort-merge joins [3, 18]. There is further agreement that
hardware-conscious joins are superior [5, 27]. However, it is not
clear whether partitioning or prefetching for non-partitioning joins,
makes the best use of the hardware resources. Balkesen et al., and
Schuh et al. claim that radix partitioned joins are superior [3, 5, 40],
while Lang et al. state the opposite [18].

Much attention has been given to parallel implementations of in-
memory radix joins by our community in the last two decades. Here
we give a brief overview. In 1999, Boncz et al. [9, 24, 25] proposed
multi-pass radix-partitioning to overcome the TLB thrashing prob-
lem of the original hardware-conscious join by Shatdal et al. [42]
(cf. Section 3.1) and investigated optimized materialization stra-
gies [26]. Kim et al. [17] and Blanas et al. [7] have evaluated the radix
join onmulticore systems. Balkesen et al. [3–5] revisited partitioned
and non-partitioned joins and optimized the implementation of Bla-
nas [7] with write-combining and streaming instructions [3, 39, 46].
Fang et al. and Makreshanski et al. [12, 23] built theoretical models
for the two hash joins and identified the tuple size as the most
critical performance factor saturating the memory bandwidth.

Schuh et al. [40] introduced NUMA-awareness to radix joins,
provided an extensive comparison against other NUMA optimized
joins [2, 18], and motivated the use of the radix join as a booster.
Among their other contributions, the authors also evaluated the
radix joins in a stand-alone TPC-H Query 19 variation, where the
size of the relations was significantly reduced by partitioning the
reference to the original tuple and cutting all strings to one byte.
Due to the lack of complete system integration, their analysis is
based on the isolated join time without considering the cost of tuple
reconstruction, which biases the conclusions [30].

Further, we note that there is a lot of related research linked
to join processing and radix partitioning: Polychroniou et al. [36]
have investigated SIMD partitioning and provide an overview of
partition variants [37], which is revisited for radix-partitioning by
Schuhknecht et al. [41] and Zhang et al. [47]. Richter et al. [38] com-
pare different hash table implementations, while Barber et al. [6]
focus on memory-efficient hash joins. Pirk et al. [34] analyze hash
joins in depth and Shrinivas et al. [43] and Abadi et al. [1] compare
materialization strategies in column-store database systems.

Partitioning also applies to non-CPU centered data processing.
For example, GPU- [35] or FPGA-accelerated [14] approaches have
similar goals and use comparable algorithms to distribute the work-
load better.
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3 PARTITIONED RADIX JOINS
Existing in-memory hash join algorithms can be divided into two
camps [40]. On the one hand, we have the non-partitioning variants
using a global hash table, which is accessed in parallel. They rely
on software-based prefetching to avoid expensive cache misses
and random memory accesses when the hash table does not fit
in the caches [5, 27]. On the other hand, the radix joins directly
reduce cache misses by joining the data partition-wise, where each
partition is sized so that the hash table fits in the cache [42]. In this
chapter, we assume that both probe and build side reside in already
materialized form to be comparable with prior work [4, 40].

3.1 Basic Partitioned Join
On a high level, a partitioned join splits both input relations into
partitions that are then joined individually.

A basic partitioned join implementation consists of two phases:
First, in the partitioning phase, both the build and the probe side
are partitioned by using a hashed value of the join condition as key.
As a result, both sides are now split into partitions containing their
respective join partners. In the second phase, the join is executed per
partition. A union of all partitions’ results yields the final outcome.

The partitioning algorithm operates in three steps [47]: The first
step scans the input and builds a histogram, counting how many
elements the partition will consist of. The second step uses the
histogram to calculate the total number of tuples and the exact
partition boundaries. We allocate an output buffer large enough
to fit all tuples and assign each partition a region based on the
partition boundaries. Finally, in the third step we scan the data
again and materialize each tuple to the correct position in the
output buffer. Each partition keeps track of the number of written
tuples to determine the correct output position.

3.2 Parallel Radix Join by Balkesen et al.
Balkesen et al. [4] proposed an efficient, publically available1 imple-
mentation of a radix join. Their join is a refined version of the one
by Blanas et al. [7]. Figure 3a depicts an overview of their approach.
Two-pass Partitioning: Boncz et al. [9] observed that a single-
split partitioned join has a performance problem. It occurs when
writing to more partitions in-parallel than the translation looka-
side buffer (TLB) has entries, which trashes the TLB. Boncz et
al. mitigate the problem by applying multi-pass partitioning, called
radix-partitioning, which performs multiple splits subsequently.
This limits the number of partitions created in each pass so that it
does not exceed the number of TLB entries. Each partitioning pass
uses a different subset of bits from the hashed key. Balkesen et al.
use two partitioning passes, as shown in Figure 3a.
Parallel Partitioning: Running the basic implementation in par-
allel is challenging because each worker writes to all partitions,
leading to high congestion. Kim et al. [17] propose to split the input
relation so that each slice can be processed in parallel. All equally
sized slices are stored in a task queue. From there, each worker
picks a task and performs the steps listed under Subsection 3.1.
Following the histogram creation of all tasks, the prefix sums are
computed combining all histograms 1 . Based on the prefix sums,

1https://www.systems.ethz.ch/node/334
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Figure 3: Radix-Partitioning in prior work

each task calculates a dedicated output location and scatters the
tuples into partitions without any synchronization 2 . The second
pass takes the partitions from pass one and splits them again 3 .

The final join is done in parallel, using task-based parallelism
that also helps with skew.

3.3 Optimized Radix Join:
Balkesen et al. further refined their radix join with software write-
combine buffers (SWWCBs) and streaming instructions [3]. We
compare our implementations against their optimized radix join
in Section 5.2. Schuh et al. [40] further optimized the radix join by
adding NUMA-awareness (cf. Figure 3b).

Software Write-Combine Buffers: Wassenberg et al. [46] pro-
pose SWWCBs to speed up radix sorting, which is also beneficial
for radix-partitioning [3]. SWWCBs are software-managed data
buffers residing in the cache, combining multiple writes. Each buffer
is at least one cache line in size and stores the partitioned tuples
instead of writing them to their destination directly A . The buffer
is flushed to its destination when it is full, which effectively reduces
the pressure on the TLB, and the number of memory writes.

Non-temporal Streaming: Non-temporal streaming instructions
mitigate the potential doubled number of writes introduced due to
SWWCBs by writing full SWWCBs directly to DRAM. The write
bypasses all caches and avoids their pollution B . However, the
data now needs to be aligned at cache line boundaries. This makes
combined use of both optimizations sensible. The maximum width
of the SIMD registers limits the size a single instruction can write at
maximum. In 2016, this was half a cache line, or respectively 256B
using AVX2. With AVX512 instructions, modern Intel processors
can store a full cache line at once.

NUMA-awareness: Currently, the radix join is not NUMA-aware
because each task writes to multiple partitions, which are located all
over the output buffer. Thus, each worker potentially has to access
different memory regions to store its tuples. Schuh et al. [40] keep
the writes local by adding an output chunk per task, which stores
the tuples in local partitions. However, now the final partitioning
result is not located in one contiguous memory region but in one
chunk per task. Hence, the join may have to read from different
NUMA nodes C . Their experimental evaluation shows that the
advantages prevail, since only reads may be on different NUMA-
nodes. Furthermore, NUMA access is much more balanced, and
overall performance increases.

https://www.systems.ethz.ch/node/334
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4 JOINS IN MAIN-MEMORY DBMS
Prior to this paper, all work on partitioned joins was evaluated with
the join in isolation using microbenchmarks. To take the next step
from a stand-alone radix join to a real database system, we inte-
grated radix-partitioned joins into Umbra [13], whose performance
is comparable to HyPer or MonetDB [11].

Umbra uses data-centric code-generation [32], relaxed opera-
tor fusion [27], arbitrary query unnesting [31], morsel-driven par-
allelism [21], and accepts the queries using a SQL frontend. We
first describe how data-centric code generation works in general,
and then how it works for both of our hash join implementations.
Following these explanations, we focus on our novel radix-join
implementation, which partitions two input dataflows.

4.1 Data-Centric Code-Generation
The main difference between a stand-alone join implementation
and one integrated into a full-featured RDBMS system is the en-
vironment. In the former, the whole system focuses on the join.
In the latter, the join is a part of operator pipelines that organize
the dataflow, as shown in Figure 4. First, a pipeline’s source oper-
ator loads the tuple from a materialized state into the CPU. Then,
the tuple traverses the operators of the pipeline and it is finally
materialized in the next pipeline breaker [29].

Umbra compiles each pipeline, in particular the dataflow from
one source operator to the materialization point, in a bottom-up
manner using the produce/consume model [32]. Each operator has
to call produce on its inputs to delegate the responsibility for start-
ing the pipeline. Eventually, the pipeline starter is reached, which
cannot delegate further. It begins pushing tuples to its consumer
up the pipeline. Once a pipeline breaker is reached, it generates
code to materialize all incoming tuples. We use this abstraction to
compile data-centric code for arbitrary SQL queries.

4.2 Materialization Strategy
Umbra stores relations column-wise in main memory [13]. We
use early materialization to reduce random access during pipeline
evaluation. Thus, the table scan only reads necessary columns,
filters them using SIMD instructions, and stitches them together in
tuples passed to the consumer. To avoid materialization overhead,
we use sideways information passing [43]. The build side of our
hash join, e.g., tells the probe pipeline the required tuples to filter
them out early.

To compare effects of the chosen materialization strategy, we
integrated Late Materialization. We traverse the query tree from top
to find the earliest access to each column. If that does not happen
immediately after a table scan, we introduce a late-load operator
that retrieves columns based on their tuple id when needed.

4.3 Non-Partitioned Hash Join
The non-partitioned hash join does not have to write out the probe
side, as shown in Figure 4. Each hash join passes the tuples on and
performs the join within the pipeline [21]. This so-called operator
fusion keeps the tuples in registers for as long as possible. Sadly,
it might also hinder inter-tuple parallelism since the code struc-
ture is more involved. Relaxed Operator Fusion (ROF) counteracts
this problem by loosening the original idea of data-centric code-
generation in favor of intermediate materialization. It allows the
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Figure 4: Pipelining in radix and hash joins. Hash joins can
pass the probe tuples through multiple joins while radix
joins have to materialize both inputs every time.

DBMS to introduce staging points in the query plan, buffering the
probe side in cache and trading pipelined tuples with cache-locality
[27]. Reading from these buffers enables vectorization optimiza-
tions, e.g., branch-free primitives, and software-based prefetching
to avoid cache misses. ROF effectively combines the advantages of
data-centric code generation with vectorization.

4.4 Partitioned Hash Join
In contrast, writing to memory is not optional for the radix join
because it builds upon the radix-partitioning phase. These frequent
writes loosen the original idea of data-centric code-generation, and
they also counteract it. So when multiple radix joins are executed
after one another, each join has to break the pipeline.2

Algorithm 1: Full Pipeline Breaker
Function Radixjoin::produce(requiredColumns):

condition← analyzeJoin(requiredColumns);
build← prepareBuild();
left.produce(condition.left.requiredColumns);
build.partition();
probe← prepareProbe();
right.produce(condition.right.requiredColumns);
probe.partition();
joinTuples(build, probe);

Thus, the radix join is both a full pipeline breaker and a pipeline
starter, as shown in Figure 4. Algorithm 1 follows along the three
phases described in Section 3.1. The code first partitions the build
side and then the probe side, which breaks both pipelines because

2When two subsequent joins use the same partition key, we could combine them in a
pipeline to avoid the pipeline break with the resulting partitioning overhead.

build
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Figure 5: Schematic Overview of our Partitioned Join.
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all data is now materialized. After both sides are partitioned, the
new pipeline is started, which joins the tuples.

The join code of Algorithm 2 mainly consists of tight loops,
which is characteristic for the produce/consume model [29]. These
tight loops are advantageous for modern CPUs because they maxi-
mize data locality by keeping the data in CPU registers as long as
possible. The algorithm has to loop over the partitions, build the
hashtable, and check whether each tuple is contained. All matching
tuples are passed to the consumer in the pipeline.
Algorithm 2: Starting a New Pipeline
Function Radixjoin::joinTuples(build, probe):

for 𝑝build, 𝑝probe ← {𝑏𝑢𝑖𝑙𝑑, 𝑝𝑟𝑜𝑏𝑒} do
hashtable = buildHashtable(𝑝build);
for 𝑡probe ∈ 𝑝probe do

for 𝑡build ∈ hashtable.probe(𝑡probe) do
consumer.consume(𝑡build ◦ 𝑡probe)

Because the majority of the work is done during or after materi-
alization, tuple collection is simple. Depending on the current input
pipeline, the tuple has to be partitioned either on the build or on
the probe side.

4.5 Morsel-Driven Partitioning
The pipeline execution is based on morsels, which divide the total
workload into smaller blocks, enabling work-stealing [21]. Every
source operator has to emit the data into the pipeline morsel-wise.
Figure 6 shows a detailed overview of the tuple flow inside our
partition step, which is used for both build and probe side.

The first pass consumes all morsels of the current source pipeline
by picking them from the morsel stream once they finish their pre-
vious work 1 . This technique allows fine-grained load balancing,
even with skewed data. The worker determines the output partition
based on the least significant bits of the hash value, which is then
paired with the tuple. This is first materialized in the worker’s own
worker-local set of SWWCBs 2 . As soon as a buffer is full, we use
non-temporal streaming instructions to move the tuples to their
temporary partition without polluting the caches.

One challenge lies in working with dataflow inputs. This means
that we need to materialize the input first without relying on his-
tograms, which is also the reason for using two passes. Hence,

each temporary partition is implemented as a linked list of pages.
Whenever a page is full, a larger page is prepended and used instead.

Afterward, each worker traverses the linked list and builds a
local histogram for the next partition pass 3 . Currently, there is
no need for communication between the workers.

In the exchange phase, we do two things: First, 4 we compute
the exact size of the output partitions based on the prefix sums of
the worker-local histograms. Second, 5 all workers’ linked lists
are combined by concatenating the lists in so-called pre-partitions.

Hence, the database system does not need synchronization be-
tween the work packages in the second partitioning pass as each
has its dedicated range.

We perform the second partitioning pass morsel-wise as well.
The radix join generates its morsels based on the pre-partitions
6 . We use the same worker to process the entire linked list of one
pre-partition. Once again, we use SWWCBs to combine the writes
and then scatter the tuple buffer to its final position 7 . Further, we
implement work-stealing to achieve proper load balancing among
the workers, even under the presence of skew 8 .

During the whole partition process, all workers are writing to
either local or dedicated memory areas. Hence, there is no need for
synchronization or writing to non-worker-local memory regions,
which ensures scalability with different numbers of worker threads
and on systems with multiple sockets.

4.6 Final Join Phase
Each morsel builds the hash table on the fly using robin-hood
hashing, which provides the most robust performance for thread-
local workloads [38]. Since moving tuples is expensive, we only
store pointers. We avoid costly resizing of the hash table because
we know its size in advance. In addition to that, we reuse the hash
table’s memory segment to avoid costly memory allocation. Thus,
we only have to reallocate memory in case the partition size has
significant skew.

4.7 Bloom Filters
We are now at the point where the join operates on cache-resident
partitions, with the cost of partitioning dominating the execution
time of the radix join [4, 40]. Materializing the probe side partitions
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can often become unnecessarily expensive in selective queries. One
optimization is to reduce the number of stored tuples for the probe
side. This is possible because most queries apply selections on the
build side before joining the data [10].

Fuzzy semi-join reducers are an established technique for non-
partitioned hash joins [19]. They improve the performance of selec-
tive joins, as already implemented in our non-partitioned join using
tagged pointers [21]. The optimizer pushes the reducers down in
the pipeline to prune tuples early (cf. Figure 7).

We introduce a Bloom-filter based reducer in our radix join to
minimize the cost of materialization. The second pass over the build
side generates the filter while partitioning. The filter is probed in
the pipeline before partitioning the probe side and is also pushed
down when possible.

Following the guidelines by Lang et al. [20], we implemented
register blocked Bloom filters. These filters partition the Bloom
filter into register-sized blocks. We have to access exactly one block
for each probe, which reduces the number of cache misses to at
most one per check. Consequently, the writes to the Bloom filter
can be done in parallel without synchronizing as two partitions
cannot share blocks. The Bloom-filtered radix join performs around
40% faster for 5% foreign key join partners (cf. Section 5.4.1).

5 EVALUATION
In the following, we present an experimental evaluation of our
radix join against our non-partitioned hash join within Umbra, a
full-fledged RDBMS. We answer when and whether partitioning
pays off.

5.1 Experimental Setup
5.1.1 Joins under test. We have compared the following three joins
inside Umbra [13]:
Radix-Partitioned Join (RJ): Our radix join implementation with
SWWCBs, non-temporal streaming, two-pass partitioning, and
thread-local output buffers. It implements all optimizations pre-
sented in Section 3.
Bloom Radix-Partitioned Join (BRJ): Our Bloom-filtered radix
join implementation. It reduces materialization overhead by filter-
ing the probe side (cf. Section 4.7).
BufferedNon-PartitionedHash Join (BHJ): Our non-partitioned
join implementation, using a global chaining hashtable with relaxed
operator fusion [27]. It features a semi-join reducer based on tagged
pointers [21].

We have validated our joins against state-of-the-art prior work:

Table 1: Workloads from Prior Work

workload size [B] tuple count size [MiB]

used in key/pay build probe build probe

A [4, 7] 8/8 16 · 220 256 · 220 256 4096
B [3, 4, 17] 4/4 128 · 106 128 · 106 977 977

Joins from Balkesen et al. (PRJ & NPJ): We have evaluated
the aforementioned joins against the partitioned (PRJ) and non-
partitioned join (NPJ) of Balkesen et al. [4], which they provide as
stand-alone implementations. To allow for a fair comparison, we
enabled all optimizations like SWWCBs and non-temporal storing
for the PRJ and software-based prefetching for the NPJ.

5.1.2 Workloads. The major part of the evaluation was performed
on the TPC-H benchmark [44], which we analyzed on a query and
individual join level. It features 22 queries with different workload
characteristics (c.f. Figure 2).

To compare against related work and refine the TPC-H analysis
by isolating certain workload factors, we used microbenchmarks.
As a base for these, we reused the workloads of Balkesen et al. [4],
whose properties are listed in Table 1. We alter the workload for
each microbenchmark to isolate particular workload factors that
are of interest, e.g., different selectivities or payload sizes.

In our system, we reproduced the setup by generating the build
and probe tables using the following SQL statement. We did not
preprocess the data and particularly did not generate indexes.
CREATE TABLE b(key BIGINT NOT NULL , pay BIGINT NOT NULL);

For workload B, we used INT instead of BIGINT to generate 4 B
sized columns.

5.1.3 Hardware. Unless otherwise noted, we used an Intel i9-9900X
(Skylake-X) CPU with 10 cores and 64GB RAM. By default, we used
all available threads, including hyper-threads. Other experiments
were conducted on a dual-socket Intel E5-2660v2 (Sandy Bridge)
with 10 cores and 256GB of RAM, and on an AMD 3950X (Ryzen
9) with 16 cores and 64GB of RAM. Detailed specifications can
be found in Table 2. We compiled the code with GCC 9 using the
march=native flag to enable the AVX512 instruction set, if possible.
The RDBMS uses LLVM and clang 9 to compile the queries itself.

To have a sound comparison, we did not include query compi-
lation time3 because the other implementations were hand-coded
and pre-compiled. Before taking any measurements, we warmed
up the system and ensured that all data is in memory. We ran all
benchmarks at least five times and reported median performance.

3Query compilation takes negligible time, even for optimized settings.

Table 2: Hardware Platforms

Skylake-X Ryzen 9 Sandy Bridge

vendor Intel AMD Intel
model i9-9900x 3950X E5-2660v2
sockets 1 1 2
cores (SMT) 10 (x2) 16 (x2) 20 (x2)
clock rate [GHz] 3.5-4.4 3.5-4.7 2.2-3.0
L1 data cache [KiB] 32 32 16
L2 cache [KiB] 1024 512 256
LLC cache [MiB] 19 16 (x4) 25
DRAM speed [GiB/s] 79.4 47.8 59.9
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5.1.4 KeyQuestions. We separate the evaluation into three parts:
First, we ran experiments to ensure that our join implementa-

tions are competitive to related work (Section 5.2), to check how
well they scale with the number of threads (Section 5.2.1) and in a
NUMA system (Section 5.2.2), and to see how efficiently they use
the memory subsystem (Section 5.2.3).

Second, we ran the TPC-H workload to check whether the radix
join can completely replace the non-partitioned hash join in our
database engine (Section 5.3.1). Since our hypothesis assumes no,
we evaluate whether the radix join could be used as a performance
booster by analyzing the TPC-H workload on a join-level (Sec-
tion 5.3.2).

Finally, with an extensive series ofmicrobenchmarks (Section 5.4)
we searched for ideal range values of workload properties (e.g., selec-
tivity, payload size, pipeline depth, etc.) that emphasize performance
advantages of the radix join over the non-partitioned hash join.

5.2 Performance characterization and
comparison to related work

We have aimed to evaluate benefits and drawbacks of partitioning
within a DBMS objectively. At the same time, this evaluation is only
insightful if our implementation offers reasonable performance.

We used PRJ and NPJ by Balkesen et al. [4, 5] with all opti-
mizations enabled to compare its performance against our join
implementations. To match the workloads used in the original pa-
per, we have used the following query to join build and probe table
and count the resulting tuples.
SELECT count (*) FROM probe r, build s WHERE r.k = s.k;

One key difference is that Balkesen et al. directly use the key
for partitioning, while we create an equally sized hash value and
store it with each tuple. This is compensated as we do not store the
payload, which is not required for the tuple count.

5.2.1 Scalability. In this experiment, we first compared the perfor-
mance of our implementations for that of the state of the art. The
results are shown in Figure 8, which indicates that both the RJ and
the BHJ are competitive to PRJ and NPJ. On the one hand, our RJ
outperforms the PRJ for workload A, while on the other hand our
BHJ is not as fast as the optimized NPJ on both workloads.

Another observation is that all implementations scale well with
the number of hardware contexts, although radix joins experience
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Figure 8: Scalability and comparison to Balkesen et al.

bigger speed-up than non-partitioned joins. For 10 threads, our RJ
implementation speeds up by a factor of 7.5 to 9.5 for workloads A
and B, respectively. For workload A, the RJ does not fully scale to 10
threads because the system already reaches the memory bandwidth
limit (as we will show in Section 5.2.3). For workload B, the hyper-
threads give us about 10% additional performance, since the smaller
tuples do not entirely saturate the memory bandwidth. As expected,
both non-partitioned hash join implementations benefit more from
hyperthreading because it hides their memory access latencies. The
NPJ implementation, unlike the BHJ, is optimized for the given
workload and performs better. For instance, the NPJ knows the
exact hash table size and distribution beforehand.

5.2.2 NUMA effects. In this experiment, we evaluated how well
algorithm implementations utilized available hardware resources
by scaling the number of cores from one to the maximum number
of logical threads available.

We used the other two machines, the dual-socket Intel Sandy
Bridge and the AMD Ryzen 9, whose chip has four chiplets (cf.
Table 2) to show the performance with NUMA.

The results in Figure 9 show that RJ scales well on the Sandy
Bridge machine. Its performance increases by a factor of 10 to 16,
depending on the workload. The smaller tuples put less pressure
on the memory bandwidth, resulting in better scalability. As before,
hyper-threads marginally sped up the performance.

On the Ryzen 9, however, we observed a different pattern and the
RJs no longer exhibited the linear scalability beyond a certain point.
The comparably small memory bandwidth is the key factor as the
bandwidth per core is 60% of the Skylake-X’s. Thus, the RJ scaled
well initially, but reached the memory bandwidth limit much faster
for workload A. As we increased the number of threads further,
the RJ slowed down because of memory bandwidth contention. As
before, the BHJ performed similarly on all machines and workloads
and scaled more independently of the workload.

5.2.3 Memory bandwidth usage. As identified by the two previous
experiments, the performance of RJ is significantly affected by
its pressure on the memory subsystem. Both when increasing the
payload size andwhen scaling the number of hardware contexts, the
performance benefits diminish as we approach the bandwidth limits.
Thus, in this experiment we analyzed the memory bandwidth usage
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Figure 10: Memory Bandwidth for 24B wide tuples
(read and write) for the individual stages of the RJ as measured
using the PCM Tools.4

Figure 10 shows the read, write, and total memory bandwidth
while performing the RJ for the SQL query stated in Section 5.4.2.
The x-axis shows the time spent to highlight how expensive each
phase of the join is. The build pipeline takes a fraction of the exe-
cution time, given that it is 30 times smaller in size than the probe
side. The probe pipeline dominates the execution time, mainly due
to the materialization phase during the two partitioning passes.
We deliberately chose this query since it demonstrates the effects
introduced by padding. It is required for the use of SWWCBs and
non-temporal streaming instructions, which outweigh the negative
effect of padding. We notice that both partitioning steps and the
join are bandwidth-bound, which confirms the futility of adding
more hardware contexts, and why increasing the payload size hurts
the performance.

The prior three experiments verified the competitiveness of our
implementation. It can fully utilize the memory bandwidth and is
bound by it, leaving minor room for improvement.

5.3 TPC-H Evaluation
The TPC-H benchmark offers a variety of queries that put pressure
on different parts of the RDBMS at varying scaling factors (SFs): i.e.,
string comparisons, large base table scans, or joins with different
selectivities [10]. To address whether the RDBMS should use a radix
join as the sole workhorse, we have compared the performance of
our join implementations by replacing all joins in the query tree
with the join under testing for different scaling factors.

Figure 11 shows the results of our experiments for relevant TPC-
H queries as we vary the dataset size (i.e., scaling factor). We used
processed tuples per second as a metric with the number of tuples
being the sum of all tuples counted at the pipeline sources.5 Queries
1, 6, and 13 were not included in our measurements since they do
not use joins.6

We make the following key observations. First, the BHJ delivers
the best overall performance, especially apparent for SFs under 30.
Second, BRJ is faster than RJ for all queries because foreign keys
mainly use filtered build sides (cf. Figure 2, [10]). Third, the BRJ
outperforms the BHJ only in Query 22 for SF 30 and 100. Fourth,
Late Materialization appears to be orthogonal to the question of
whether to partition or not. Therefore, if one needs to choose to im-
plement only one hash join in their system, the BHJ is the apparent
implementation choice.
4https://github.com/opcm/pcm
5For example, the number of tuples in “SELECT count(*) FROM a, b WHERE a.key
= b.key;” is tablescan + tablescan + groupby scan = size(𝑎) + size(𝑏) + 1.
6Our system uses a groupjoin for Query 13, which combines join and group by [28].

This conclusion confirms our hypothesis that replacing all joins
is not desired because the radix join is most promising for selected
workloads [4, 5, 40]. We continue our analysis in more detail for
individual query plans to explain why BRJ and RJ cannot always
replace the BHJ as the primary join.

5.3.1 End-to-EndQuery Performance. In this section, we analyze
the selected TPC-H queries based on their query plan.7 Since the
queries in TPC-H have different characteristics, we have split them
into several groups and discuss the performance difference between
BHJ, BRJ, and RJ based on the join sizes in SF 100.
Small Build Size (Q2, Q11): These queries contain only joins with
a small build side, which fits in the caches. This is advantageous
for the BHJ because there are no cache misses. Query 2 contains
nine different joins, whose build sides, even for SF 100, are smaller
than the LLC. The 2GB probe side causes materialization overhead,
which is more significant for the RJ than for the BRJ.

In Query 11, the largest build side is 480 KB, so the global hash
table fits in the L2 cache, making the partitioning phase redundant.
The BRJ performs better than the RJ in both queries because it can
avoid most partition overhead by pre-filtering the tuples.
Single Join Queries (Q4, Q12, Q14, Q19): For these queries,
the number of pipelines is overseeable, and the join mostly domi-
nates the query runtime. Query 4 contains one join of orders and
lineitem that clearly dominates the query. The Bloom filter pays
off since the join’s build is pre-filtered. It can discard around 80% of
unjoined tuples, for a predicate with 3% selectivity, and thus reduces
the partitioning overhead. Even though its build side does not fit in
the LLC for SFs larger than 10, the BHJ’s performance remains con-
stant, thanks to the buffers introduced by relaxed operator fusion.
Query 12 spends most of its time scanning the lineitem relation
using it as the build side for a join with the orders relation. Once
again, the bottom-most selection discards the majority (99.5%) of
the tuples, but the resulting build side is 87MB for SF 100, which
is four times the LLC size. As before, the prefetching keeps the
BHJ’s performance stable, and the RJ cannot keep up with the BRJ.
Query 14 joins 1% of the tuples from lineitemwith partwhich are
209MB and 560MB in size, respectively. As both sides are roughly
equal in size, both BRJ and RJ perform well for a high enough
SF. Query 19 divides its runtime between filtering and joining the
lineitem relation. The build side is only 2MB in size, and fits in
the LLC. The BHJ cannot significantly outperform the BRJ because
the Bloom filter drops 90% of tuples before the partitioning phase.
Otherwise dominated Queries (Q3, Q10, Q15, Q16, Q17, Q18):
In these queries, joins account for less than 40% of the total runtime,
which limits the effect that the join implementation has on the
overall performance. Queries 15, 16, 17, and 18 are dominated by
grouping of tuples.Query 10 is dominated by scanning and selecting
the base table, while Query 3 is dominated by a group join. As a
result, the differences in the join performance are minor for large
SFs, as other operators dominate the query runtime. For small scale
factors, however, the BHJ is superior.
Complex Queries (Q5, Q7, Q8, Q9, Q21, Q22): These queries
contain various joins with different build and probe side sizes. We

7All generated query plans are similar to the ones reported by the Umbra Webinter-
face umbra-db.com/interface .

https://github.com/opcm/pcm
umbra-db.com/interface
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Figure 11: Throughput of all TPC-H queries containing joins with every join replaced by the one under testing8

cannot explain the effect of the join performance solely based on the
query plan and the total execution time. In the following sections
we check if there might be a case to use the BRJ as a performance
booster for each join.
Materialization Strategies: Late Materialization (LM) only helps
when we substantially reduce the tuple width at selective joins. For
example, in Query 8, LM reduces the build side in four out of seven
joins. Or Query 20, where the result consists of two text columns,
which are only present in the output. Materializing them late pays
off, reducing the probe side size by two-thirds. When using LM
in Query 14, however, we only reduce the build size by 8 B. The
random access for all build side tuples outweighs the positive effect.

5.3.2 Individual Join Comparison. The analysis in the previous
section shows that most TPC-H queries perform multiple joins.
Using just one join implementation for the whole query can lead
to suboptimal performance. However, analyzing the impact for
each join in a query plan in our system is challenging because all
joins are part of pipelines (cf. Section 4.1), where all operators of
a pipeline are fused to pass the tuples in registers and efficiently
organize the code in tight loops.

Thus, we have examined all possible permutations of the join
plan to compare BRJ and BHJ with TPC-H SF 100. To evaluate each
join in the query plan (e.g., the 2nd join), we computed the pairwise
difference in performance when all other joins were fixed with
one implementation, and we only varied the hash join algorithm
used for that join. We show results for selected queries in Figure 12,
where the x-axis denotes the join number within the query plan,
and give an overview for all the joins in TPC-H in Figure 1, where
we break down the measurements in build and probe side sizes.

One key observation is that most joins are not relevant for the
total execution time. However, for some of the expensive joins,
choosing the optimal implementation makes a big difference. For
example, the execution time can be up to 60% slower or up to 30%
8Due to the materialization overhead, the RJ cannot finish processing Q8, Q9, and Q21
for SF100 within our memory budget.

faster when selecting the BRJ instead of the BHJ. Therefore, we
focus the rest of our analysis on queries with multiple joins, where
the join implementation choice has the most significant impact.

In Query 5, a single join dominates the runtime difference be-
tween the BRJ and BHJ. This join uses the unfiltered lineitem
relation as the probe side and has a much smaller build side. Even
though the build side does not fit in the LLC, the size difference
between build and probe side is 1:117 and too big for the BRJ to pay
off (cf. Figure 12). Query 8 also uses the unfiltered lineitem as the
probe side, which is 20GB in size in the differentiating join. The
build side is a 1MB filtered relation. As a result, the hash table fits
in the cache, and the BHJ is 60% faster in total execution time.

In Queries 7 and 9, the topmost two joins dominate the runtime
difference. Each has a large build and probe side. RJ and BRJ still
cannot outperform the BRJ, because the build tuple sizes are over
48 B, making partitioning too expensive to pay off. Prefetching in
the BHJ also reduces cache misses more effectively.
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Query 21 is dominated solely by joins, and each join has different

characteristics, as shown in Figure 13. The query has a left-deep
join tree, which prevents long pipelines.

1 is negligible because of its size. For 2 , the build side fits in
the LLC. The Bloom filter can reduce the materialization overhead,
so the BHJ is only 10% faster. 3 has narrow tuples and comparable
sizes, so BRJ and BHJ perform equally. In 4 and 5 , multiple factors
lead to a suboptimal performance. The build side tuples are 33 B in
size and the difference between build and probe size is not optimal.
While Figure 12 shows that 3 is on average faster with BRJ, using
BHJ for all leads to the overall fastest runtime.

Query 22 consists of two joins. One is a non-equi join, which
cannot be handled by the hash join, sowe do not enlist it in Figure 12.
The anti-join reads the customer relation which is 155MB in size
as its build side and the unfiltered orders relation which is 1.8 GB
as its probe side to evaluate a not exists predicate. Thus, each probe
tuple is only 12 byte in size, including the hash value. Since small
tuples work well for the BRJ, using the BRJ for this join improves
the total query performance by 30% over the BHJ.

5.4 Isolating the effects of different factors
The analysis done so far has focused on the TPC-H benchmark,
where the join performance is concurrently affected by different
factors. The combination of these factors leads to a completely
different view on the RJ than in prior work (c.f. Section 5.2, [40]).
In order to pin down the individual effects of each factor, we ran
an extensive series of microbenchmarks. Combining all, we could
isolate the cases where BRJ and RJ are superior to non-partitioned
joins.

5.4.1 Effect of foreign key selectivity. One common pattern in all
queries is that the BRJ outperformed the RJ due to selective foreign
key joins (cf. Figure 2). In this experiment, we analyzed how varying
selectivity affects each join’s performance.

Our workload was based on workload A by Balkesen et al. [4], on
which the radix join generally performs well (cf. Section 5.2). The
build side remained unchanged for all selectivities. We modified the
foreign key selectivity in the probe side while preserving its size to
ensure that the number of processed tuples remained constant.

The results of the experiment are shown in Figure 14. We ob-
serve that both the BRJ and the BHJ are significantly affected by the
varying selectivity. The BRJ is up to 50% faster than the RJ for low
selectivities. However, when more than 50% of the foreign keys find
a join partner, the RJ overtakes the BRJ because the computation
time required to perform the filter lookup does not pay off — as
it introduces up to one cache miss per lookup. We overcome this
problem by sampling the probe side tuple while probing the Bloom
filter. This allows us to switch off the filter adaptively in case almost
all tuples pass the filter, which introduces a minor overhead, mostly
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Figure 14: Impact of pre-filtering the probe side using a
Bloom-filter based early probe

below 10%. We note, however, that TPC-H and real-world queries
usually have selectivities below 25% (cf. Figure 2, [10]). This exper-
iment shows why the BRJ performs better than the RJ in TPC-H.
We further note that the RJ is 10 to 40% faster than the BHJ for low
selectivities, when all other parameters are near-optimal.

5.4.2 Effect of payload size. Another factor that influences the
join performance is the size of the payload. Some joins have small
payloads, but that is not always the case since the columns, e.g.,
may contain strings (cf. Figure 2). To isolate the effects that the
payload size has on the performance of the RJ and BHJ, we set the
foreign key selectivity to 100%.

Once again, we based our workload on the unskewed workload A
by Balkesen et al. [4], where the radix join generally performs well
(cf. Section 5.4.5). The build side remained unchanged. We modified
the probe tuple size by adding multiple 8 B wide columns with
randomized integers. We used up to 8 payload columns, leading to
a maximum payload size of 64 B. Together with the join key and its
hash value, our tuples were at most 80 B wide.

Our queries are similar to the following with one payload:
SELECT sum(s.p1) FROM build r, probe s WHERE r.k = s.k;

This query materializes 32 B per tuple: 8 B for the payload, 8 B for
the key, 8 B for its hash value, and 8 B padding. We show the results
in Figure 15 and notice that the performance of the RJ is more
affected by the payload size than the BHJ. The RJ performance
degrades by a factor of 7, while the BHJ remains constant for five
times larger tuples. Also, the use of SWWCBs is visible as the tuple
sizes are padded to the next power of two. We do not use buffers
for tuples larger than 64 B because padding would lead to higher
performance losses than the benefits of non-temporal streaming.

LM lowers the performance, since the selectivity is at 100% and
we have to additionally store the tuple id, leading to 24 Bwide tuples.
The RJ performs strictly worse due to cache misses introduced by
random access after the join phase which could be addressed by
radix decluster.[26] The BHJ is not affected by LM because there
are no intermediate results.
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The performance of the BHJ is memory bound (i.e., affected
primarily by the latency of random memory accesses). Hence the
tuple size does not affect its performance significantly. The RJ,
however, is bandwidth bound. The materialization costs heavily
influence its performance in the partitioning phase, which is directly
dependent on the payload size (cf. Section 5.2.3). The RJ is up to
three times faster than the BHJ for small tuples, but it completely
loses the advantage once the tuple size exceeds 32 B.

Table 3: Throughput [T/s] w
and w/o Late Materialization

LM no LM benefit

BHJ 452M 453M ±0 %
BRJ 656M 487M +35%
RJ 341M 153M +122%

5.4.3 Combined effect of pay-
load size and selectivity. Both
our previous benchmarks can-
not individually show the ben-
efits of Late Materialization.
However, if we vary and analyze
selectivity and payload size, we
can see its benefits. We modi-
fied the workload with 5 % selectivity from Section 5.4.1 by adding
columns to the probe side, like in Section 5.4.2. We used four 8 B
columns which total 40 B including the hash value. Using LM, we
only had to materialize 24 B before and could fetch the remaining
24 B after the join.

Analyzing the results from Table 3, LM doubles RJ’s performance
because it halves the necessary materialization. The thereby intro-
duced random access has no negative consequences since only 5%
of the tuples require it. Yet, it is still slower than the BRJ without
LM, which follows the idea of sideways information passing [43]
to prune most rows even before partitioning. However, LM gives
the BRJ a significant boost by reducing the materialization, making
it almost 50% faster than the BHJ. The BHJ does not materialize the
intermediate result, so there is no benefit.

5.4.4 Effect of pipelining. When lining up multiple joins in a pipe-
line, the effects of both factors (selectivity and payload size) amplify
each other. This is particularly bad for chaining RJs. Each RJ in
the pipeline requires materialization and adds its column to the
payload size, effectively enlarging the tuple size as the pipeline
depth increases. This workload is a typical case for queries operating
on a star schemawhere the central table connects various fact tables
for additional information.

To evaluate the effects of the pipeline depth, we used the same
workload as before, but instead of summing up the payloads, we
used them as keys for fact tables, which resulted in a star-schema
benchmark. Thus, we added multiple copies of our build side table
containing randomly permutated rows. So we still achieved 100%
selectivity and could investigate the pipelining effect isolated. The
optimizer had to use the central table every time because its keys
connect the fact tables, finally resulting in a query plan with a single
long pipeline (cf. BHJ in Figure 4).
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Figure 16: Impact of pipeline depth
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Figure 17: Impact of different Zipf factors and comparison
against original code by Balkesen et al.

We show the results in Figure 16, where we observe the through-
put for each join in the pipeline. In the ideal case, the throughput is
constant, which means that pipeline depth and join execution time
do not correlate. This is indeed almost the case with the BHJ.

The performance of the RJ, however, decreases proportionally to
the length of the pipeline. Materialization overhead and memory
bandwidth limitations add up, ultimately slowing down the join.

5.4.5 Effect of skew. To evaluate the effect of skew, we populated
the foreign column in the probe relation with Zipf distributed data
and varied the Zipf factor between a uniform distribution and 𝑧 = 2,
which resembles high skew. The same set-up was used by Balkesen
et al. to evaluate the implementation of their PRJ (cf. Section 3.2)
and their NPJ. The results of the experiment are shown in Figure 17.

We note that both the NPJ and BHJ benefit from an increase in
skew as the workload exhibits better temporal cache locality and
incurs less randommemory accesses during the probe phase. Blanas
et al. [7] already reported similar observations. For both radix joins,
however, the skew has adverse effects. The partitioning of skewed
data leads to heterogeneous partition sizes, which complicates the
partition scheduling. This is especially visible when 𝑧 > 1, meaning
more than 50% of the tuples find their join partner in the first 20%
of the build relation.

For workload A, BHJ outperforms RJ once the skew is higher
than 𝑧 = 1, and is more than five times faster for 𝑧 = 2. For workload
B, the intersection happens later for the NPJ and not at all for the
BHJ since both relations are equally sized and have narrower tuples,
both of which are more favorable to the radix joins. Comparing
PRJ and our RJ, both show similar runtime characteristics. Our
implementation is up to 50% faster because it parallelizes better,
as we have already seen in Section 5.2.1. The BHJ profits from
increased skew because it improves the cache locality. In contrast,
the RJ loses performance for 𝑧 ≥ 1 since it throws partition sizes
and scheduling out of balance.

5.4.6 Effect of build size. Prior work extensively studied this effect
[3, 4, 7, 40]. As long as the build side fits into the LLC, the global
hashtable does not suffer from cache misses, rendering partitioning
useless. For larger hashtable sizes, prefetching reduces the cache
misses for BHJ, while partitioning shows its strength for the BRJ.
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We observed this behavior in the TPC-H measurements (c.f.
Figure 11), where the BRJ only began to pay off in larger SFs. The
in-depth join analysis presented in Figure 1 also shows that the
LLC size is crucial: having a build side smaller than the LLC means
there is no need for partitioning.

5.4.7 Effect of size difference. The difference in size between the
build and the probe side has also been analyzed in prior work as
we can see from the chosen datasets A and B, with size differences
of 1:1 and 1:22. Schuh et al. also used a maximum difference of
1:10 [4, 40]. The reason is that a limited size difference ensures
that the cost of materializing the partitions is in the same order of
magnitude for both the build and the probe side.

We already observed the negative effect of a too-large size differ-
ence in the TPC-H measurements (c.f. Figure 1). When build and
probe side are in the same order of magnitude, the RJ performs
well and might outperform the BHJ (depending on the values of
the other factors). The BRJ can operate on a broader range of work-
loads since pre-filtering decreases the materialization overhead. For
example, the size difference in Query 22 is 1:11 and the BRJ leads
to a speed-up of 30%. In contrast, for Join 4 in Query 5 the size
difference is 1:100 and the BHJ is 40% faster.

6 DISCUSSION AND CONCLUSION
In this paper, we have addressed one of the most important join
questions of the last decade:When does radix partitioning pay off? To
do that, we integrated a state-of-the-art radix partitioned hash join
into a main-memory DBMS and compared it against an optimized
non-partitioned hash join implementation. Given the results from
prior work, our expectation was to use it to boost some expensive
analytical queries (e.g., from the TPC-H workload).

Surprisingly, the benefits of the optimized radix join (withNUMA-
awareness, SWWCBs, and non-temporal streaming instructions)
are barely noticeable for any join in TPC-H. After an in-depth in-
spection, we identified that partitioning (and materializing) tuples
— which are not present in the join result — dominates its runtime,
especially for selective joins. We tried Late Materialization to re-
duce tuple width, which sped up the RJ in some microbenchmarks
but did not make a big difference in TPC-H. Lastly, we addressed
this issue by implementing a Bloom filter in the probe side (BRJ).
While this slightly slows down the join in the microbenchmarks, it
is significantly faster for the TPC-H queries, as shown in Figure 18.

However, even with that optimization, the non-partitioned hash
join (BHJ) achieved comparable speed and a more stable perfor-
mance than the BRJ for all queries. In fact, the BRJ is faster than the
BHJ for SF 100 only for one join in TPC-H, and even then only by
30%. This shows a severe discrepancy with the insights obtained by
prior work when the analysis was done only on microbenchmarks.

The second major contribution of our work comprises an exten-
sive analysis of the performance of each individual TPC-H join (c.f.
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Figure 18: Speedup of different join implementations over
the optimized radix join

Table 4: Workload Characteristics for Partitioned Joins

Factors Workable Beneficial

Selectivity handled by Bloom filter
Payload Size9 ≤ 32B ≤ 16B
Pipeline Depth < 8 Joins < 2 Joins
Skew (Zipf) ≤ 1 ≤ 0.5
Build Size > 𝐿𝐿𝐶 ≫𝐿𝐿𝐶

Size Difference < ×50 < ×10

Figure 1) and isolating the effects of different workload factors with
a series of microbenchmarks. The end goal was to synthesize the
range of values for the key workload properties when using the
radix join (and partitioning the data) actually brings benefits. Our
findings are summarized in Table 4.

One key observation is that the RJ is very sensitive to any devi-
ation from the near-optimal workload characteristics. While the
BRJ delivers competitive performance for a large range of queries
(c.f. Figure 1), it seldom can reveal its full potential and bring per-
formance improvements over the non-partitioned alternative. The-
oretically, we can expect up to a 300% improvement by choosing
the radix join. In reality, for some cases we even observe a perfor-
mance drop because the required workload conditions are not met,
e.g., the payload is not narrow enough. This makes it difficult for
the optimizer to reliably predict the expected improvement from
choosing the radix join over the hash join.

Putting the previously researched datasets and TPC-H into per-
spective, it becomes clear that past research took place on a rela-
tively narrow range of data. We extended the applicability of the RJ
to varying payload sizes and selectivities. While this makes it easier
for practitioners to use it, it is still difficult to judge if the insights
obtained from that evaluation are also applicable to their workloads.
Although, TPC-H is synthetic, it still provides a broader range of
queries and data properties (Table 5).10 Actual real-world data is
even less suitable for the radix joins with its non-negligible data
skew and high emphasis on string processing (and wider payloads).

We have shown that integrating the optimized radix join in
an RDBMS is a non-trivial process and requires additional modi-
fications to make it competitive for selective queries. Even then,
choosing when to use it to gain a performance advantage requires
many parameters to be satisfied and be accurately known by the
optimizer at runtime. So unless the radix join is beneficial for other
reasons, e.g., larger than main-memory working sets, we express
reservations that implementing the radix join in a general-purpose
production system justifies the added complexity.

9Late Materialization can handle large payloads when they occur with selectivity.
10TPC-DS did lead to similar insights. In the Join Order Benchmark [22], the RJ
performed worse because it is string-processing heavy.
11JCC-H [8] provides a more realistic drop-in replacement for TPC-H with skew. It
puts even more pressure on the radix join.

Table 5: Workloads for Join Processing

Factors Prior Work TPC-H Real World [45]

Skew (Zipf) 0 − 2 none11 yes
Payload Size 8 − 16B ≈ 32 B large (strings)
Pipeline Depth 1 Join 1 − 5 Joins various
Selectivity 100% low selectivity low selectivity
Size Difference 1 − 25 mostly high mostly high
Build Size ≫𝐿𝐿𝐶 mostly small mostly small
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