
1

Data Processing on Modern Hardware

Jana Giceva

Lecture 5: Instruction execution

 Pipelining is a CPU implementation technique where multiple instructions are overlapped in execution

 Break CPU instructions into smaller units and connect them in a pipe

 Ideally, a k-stage pipeline improves the throughput performance by a factor of k.

 Slowest (sub-) instruction determines the clock frequency danger of non-uniform stage delays

 Ideally, break instructions into k equi-length parts

 and reduce the number of cycles it takes to execute an instruction (i.e., the CPI).

Pipelining in CPUs

2

A B C

A B C

A B C

A B C

A B C

A B C

 An example is the classical five-stage pipeline for RISC:

 Every instruction can be implemented in, at most, 5 cycles with the following stages (clock cycles):

 IF: Instruction Fetch, ID: Instruction Decode, EX: Execution, Mem: Memory Access, WB: Write-back

Pipelining in CPUs

3

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

instr. i

instr. i+1

instr. i+2

0 1 2 3 4 5 6 Clock →

Parallel execution

The effectiveness of pipelining is hindered by hazards

 Structural hazard

 Different pipeline stages needs the same functional unit

 (resource conflict: e.g., memory access ↔ instruction fetch)

 Data hazard

 Result of one instruction not ready before access by later instruction

 Control hazard

 Arises from branches or other instructions that modify the Program Counter (PC)

 (“data hazard on the PC register”)

 Hazards lead to pipeline stalls that decrease the IPC (instruction per cycle)

Hazards

4

A structural hazard will occur when a CPU cannot support all possible combinations of instructions

simultaneously in overlapping execution (e.g., because of a special functional unit).

Hypothetically, if we assume that the CPU has only one memory access unit and instruction fetch and

memory access are scheduled in the same cycle.

Structural Hazards

5

IF ID EX MEM WBinstr. i

instr. i+1

instr. i+2

0 1 2 3 4 5 6 7 Clock →

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

A structural hazard will occur when a CPU cannot support all possible combinations of instructions

simultaneously in overlapping execution (e.g., because of a special functional unit).

Hypothetically, if we assume that the CPU has only one memory access unit and instruction fetch and

memory access are scheduled in the same cycle.

Structural Hazards

6

IF ID EX MEM WBinstr. i

instr. i+1

instr. i+2

0 1 2 3 4 5 6 7 Clock →

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WBstall

 Instructions read R1 before it was written by the LD instruction

(recall that stage WB writes register results)

 Unless stalled, reading R1 will cause incorrect execution result.

Data Hazards

7

IF ID EX MEM WB

0 1 2 3 4 5 Clock →

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

LD R1, 0(R2)

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

IF ID EX MEM WB

LD R1,0(R2)

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Resolution:

 Forward result data from instruction to instruction

 Can resolve hazard LD ↔ AND on previous slide

 Cannot resolve hazard LD ↔ SUB on previous slide.

 Schedule instructions (at compile- or runtime)

 Cannot avoid all data hazards

 Detecting data hazards can be hard, e.g., if they go through memory

Data Hazards

8

SD R1, 0(R2)

LD R3, 0(R4)

Tight loops are a good candidate to improve instruction scheduling

Data Hazards

9

for (i=999; i>0; i=i-1)

x[i] = x[i]+s;

l: fld f0,0(x1) // f0=array element

fadd.d f4,f0,f2 // add scalar in f2

fsd f4,0(x1) // store result

addi x1,x1,-8 // decrement pointer

bne x1,x2,l // branch x1!=x2

no scheduling

l: fld f0,0(x1)

stall

fadd.d f4,f0,f2

stall

stall

fsd f4,0(x1)

addi x1,x1,-8

bne x1,x2,l

l: fld f0,0(x1)

addi x1,x1,-8

fadd.d f4,f0,f2

stall

stall

fsd f4,0(x1)

bne x1,x2,l

re-schedule

With rescheduling, we can

reduce it from 8 to 7

clock cycles per

element iteration.

S
rc

:
H

e
n

n
e

s
s
y
 a

n
d

 P
a

tt
e

rs
o

n
,
C

h
a

p
te

r
3

:
IL

P
 a

n
d

 I
ts

 E
x
p

lo
it
a

ti
o

n
.

Tight loops are a good candidate to improve instruction scheduling

Data Hazards – loop unrolling

10

for (i=999; i>0; i=i-1)

x[i] = x[i]+s;

l: fld f0,0(x1) // f0=array element

fadd.d f4,f0,f2 // add scalar in f2

fsd f4,0(x1) // store result

addi x1,x1,-8 // decrement pointer

bne x1,x2,l // branch x1!=x2

l: fld f0,0(x1)

fld f6,-8(x1)

fld f10,-16(x1)

fld f14,-24(x1)

fadd.d f4,f0,f2

fadd.d f8,f6,f2

fadd.d f12,f10,f2

fadd.d f16,f14,f2

fsd f4,0(x1)

fsd f8,-8(x1)

fsd f12,-16(x1)

fsd f16,-24(x1)

addi x1,x1,-32

bne x1,x2,l

l: fld f0,0(x1)

fadd.d f4,f0,f2

fsd f4,0(x1)

fld f6,-8(x1)

fadd.d f8,f6,f2

fsd f8,-8(x1)

fld f10,-16(x1)

fadd.d f12,f10,f2

fsd f12,-16(x1)

fld f14,-24(x1)

fadd.d f16,f14,f2

fsd f16,-24(x1)

addi x1,x1,-32

bne x1,x2,l Loop unrolling

Unrolled loop will run in

26 cycles:

• fld has 1 stall

• fadd.d has 2 stalls

• 14 issue instructions

6.5 cycles per element

With scheduling, we can

reduce to 14 instructions

Or 3.5 cycles per element

Loop unrolling

w/ scheduling

S
rc

:
H

e
n

n
e

s
s
y
 a

n
d

 P
a

tt
e

rs
o

n
,
C

h
a

p
te

r
3

:
IL

P
 a

n
d

 I
ts

 E
x
p

lo
it
a

ti
o

n
.

Control hazards are often more sever than data hazards.

 Most simple implementation: flush pipeline, redo instruction, fetch

 With increasing pipeline depths, the penalty gets worse.

Control hazards

11

IF ID EX MEM WBbr. instr. i

instr. i + 1

target instr.

0 1 2 3 4 5 6 7 Clock →

IF

IF ID EX MEM WB

IF ID EX MEM WB

idle idle idle idle

target instr. + 1

Modern CPUs try to predict the target of a branch and execute the target code speculatively

 Prediction must happen early (ID stage is too late).

Thus, Branch Target Buffers (BTBs) or a Branch Target Cache

 Lookup Table: PC (predicted target, taken?)

 Consult Branch Target Buffer parallel to instruction fetch

 If entry for current PC can be found: follow prediction

 If not, create entry after branching.

 Inner workings of modern branch predictors are highly involved

(and typically kept secret).

Branch prediction

13

Selection queries are sensitive to branch prediction:

Or written as C code:

Selection Conditions

14

SELECT COUNT(*)

FROM lineitem

WHERE quantity < n

for (unsigned int i=0; i < num_tuples; i++)

if (lineitem[i].quantity < n)

count++;

end for

Selection Conditions (Intel Q6700)

15

The performance of the

query is dependent on

the selectivity of the

predicate (and how

predictable it is for the

hardware speculator).

Predication: Turn control flow into data flow

 This code does not use a branch any more (except to implement the loop).

 The price we pay is an + operation for every iteration

 Execution cost should now be independent of predicate selectivity.

Predication

16

for (unsigned int i=0; i < num_tuples; i++){

count += (lineitem[i].quantity < n);

}

for (unsigned int i=0; i < num_tuples; i++){

if (lineitem[i].quantity < n)

count++;

}

Predication

17

The performance of the

query is now independent

on the predicate selectivity.

Faster overall, slower at the

extreme ends.

This was an example of software predication.

How about this query?

Some CPUs also support hardware predication.

 E.g., Intel Itanium 2

 Execute both branches of an if-then-else and discard one result

Predication

18

SELECT quantitiy

FROM lineitem

WHERE quantity < n

Experiments (AMD AthlonMP / Intel Itanium2)

19

int sel_lt_int_col_int_val(int n,

int* res, int* in, int V){

for(int i=0,j=0; i<n; i++){

/* branch version */

if (src[i] < V)

out[j++]=i;

/* predicated version */

bool b = (src[i] < V);

out[j] = i;

j += b;

}

}

Src: Boncz, Zukowski, Nes. MonetDB/X100: Hyper-Pipelineing Query Execution. CIDR 2005

query selectivity

m
s
e

c
.

The count +=… still causes a data hazard

 This limits the CPUs possibilities to execute instructions in parallel

Some tasks can be rewritten to use two cursors:

Two cursors

20

for (unsigned int i=0; i<num_tuples/2; i++){

count1+=(data[i]<n);

count2+=(data[i+num_tuples/2]<n);

}

count=count1+count2;

for (unsigned int i=0; i < num_tuples; i++)

if (lineitem[i].quantity < n)

count++;

end for

Two cursors (experiments)

21

Two cursors achieves

even better overall

performance.

Usually, we have to handle multiple predicates:

The standard C implementation uses && for the conjunction:

Conjunctive predicates

22

SELECT 𝐴1,…, 𝐴𝑛
FROM R

WHERE 𝑝1 AND 𝑝2 AND … AND 𝑝𝑘

for (unsigned int i=0; i<num_tuples; i++){

if (𝑝1 && 𝑝2 && … && 𝑝𝑘)
…;

}

The && introduce even more branches. The use of && is equivalent to:

An alternative is the use of the logical &:

Conjunctive Predicates

23

for (unsigned int i=0; i<num_tuples; i++){

if (𝑝1)
if (𝑝2)

⋮
if(𝑝𝑘)
…;

}

for (unsigned int i=0; i<num_tuples; i++){

if (𝑝1 & 𝑝2 & … & 𝑝𝑘)
…;

}

for (unsigned int i=0; i<num_tuples; i++){

answer[j]=i;

j+=(𝑝1 & 𝑝2 & … & 𝑝𝑘);
}

Conjunctive Predicates

24
Src: Ken Ross. Selection Conditions in Main Memory. TODS 2004

Intel Pentium III

1. && is very good when 𝑝1 is very

selective.

2. & reduces to only one branch.

3. No-branch gives predictable

performance at the expense of doing

extra work.

A query compiler could use a cost model to select between variants:

 p && q : when p is highly selective, this might amortize the double branch mis-prediction risk

 p & q : number of branches halved, but q is evaluated regardless of p’s outcome

 j += : performs memory write in each iteration.

Notes:

 Sometimes, && is necessary to prevent null pointer dereferences

 Exact behavior is hardware-specific.

Cost model

25

if (p && p->foo == 42)

Unfortunately, predicting the cost of a variant might be hard

 Many parameters involved: characteristics of data, machine, workload, etc.

e.g., branching vs. no-branching in TPC-H Q12:

Cost model

26
Src: Raducanu and Boncz. Micro-Adaptivity in Vectorwise. SIGMOD 2013

S
rc

:
R

a
d

u
c
a

n
u

a
n

d
 B

o
n

c
z
.
M

ic
ro

-A
d

a
p

ti
v
it
y

in
 V

e
c
to

rw
is

e
.
S

IG
M

O
D

 2
0

1
3

Idea:

 Generate variants of primitive operators

 With/without branching

 Different compilers

 Operator parameters (hash table configurations, etc.)

 Try to learn cost model for each variant.

 Exploit and explore:

 Profile every execution to refine the cost model

 Choose variant based on cost model (exploit),

but with a small probability choose a random variant (explore)

Micro Adaptivity

27

S
rc

:
R

a
d

u
c
a

n
u

a
n

d
 B

o
n

c
z
.
M

ic
ro

-A
d

a
p

ti
v
it
y

in
 V

e
c
to

rw
is

e
.
S

IG
M

O
D

 2
0

1
3

Offline training is not suitable for this

problem real-time learning for multi-

armed bandit (MAB) problems.

Vector-at-a-time execution:

 Re-consider variant choice for every n vectors.

 Adapt to specifics of the particular query/operator.

 Also adjust to varying characteristics as the query progresses.

Micro Adaptivity

28

S
rc

:
R

a
d

u
c
a

n
u

a
n

d
 B

o
n

c
z
.
M

ic
ro

-A
d

a
p

ti
v
it
y

in
 V

e
c
to

rw
is

e
.
S

IG
M

O
D

 2
0

1
3

Micro Adaptivity (experiments)

29

S
rc

:
R

a
d

u
c
a

n
u

a
n

d
 B

o
n

c
z
.
M

-i
c
ro

A
d

a
p

ti
v
it
y

in
 V

e
c
to

rw
is

e
.
S

IG
M

O
D

 2
0

1
3

 The actual execution of instructions is handled in individual functional units

 E.g., load/store unit, ALU, floating point unit, etc.

 Often, some units are replicated.

 Chance to execute multiple instructions at the same time.

 Modern CPUs, for instance, can process up to 4 instructions at the same time

 IPC can be as high as 4

 Such CPUs are called superscalar CPUs.

Improving IPC

30

Higher IPCs are achieved with help of dynamic scheduling

 Instructions are dispatched to reservation stations

 They are executed as soon as all hazards are cleared

 Register renaming in the reservation stations helps to reduce data hazards

This technique is also known as Tomasulo’s algorithm.

Dynamic Scheduling

31

instruction stream

reservation stations

Example: Dynamic scheduling in MIPS

32

Data dependency for OoO – loop fission

33

size_t sel_bloomfilter_sint_col (size_t n, size_t* res, char* bitmap, sint* keys){

size_t i, ret = 0;

for (i = 0; i < n; i++) {

slng gv = bf_hash(keys[i]);

res[ret] = i;

ret += bf_get(bitmap, gv); // loop data dependency and cache miss

}

return ret;

}

size_t sel_bloomfilter_sint_col (size_t n, size_t* res, char* bitmap, sint* keys){

size_t i, ret = 0;

for (i = 0; i < n; i++) { // independent iteration

slng hv = bf_hash(keys[i]);

tmp[i] = bf_get(bitmap, hv); // cache miss

}

for (i = 0; i < n; i++) {

res[ret] = i;

ret += tmp[i];

}

return ret;

}

S
rc

:
R

a
d

u
c
a

n
u

a
n

d
 B

o
n

c
z
.
M

ic
ro

-A
d

a
p

ti
v
it
y

in
 V

e
c
to

rw
is

e
.
S

IG
M

O
D

 2
0

1
3

In the previous example, the loop fission variant:

 When it sustains a cache miss for bf_get(), due to its data-independence, the CPU can continue executing

the next loop iteration(s), leveraging the large OoO execution capabilities of modern CPU processors (>

100 instructions).

 This way the CPU can get multiple (up to 5 on IvyBridge) loop iterations in execution at any time, leading

to 5 concurrent outstanding cache misses, maximizing memory bandwidth utilization.

In contrast, the non-fission variant:

 Each iteration waits on each other due to the loop-iteration dependency less concurrent cache misses

and therefore lower memory footprint.

Data dependency for OoO – loop fission

34

 Usually, not all units can be kept busy with a single instruction stream:

 due to data hazards, cache misses, etc.

Instruction-level parallelism (ILP)

35

instruction stream

time

fu
n

c
tio

n
a
l

u
n

its

Idea: use the spare slots, for an independent instruction stream

 This technique is called simultaneous multithreading (hyper-threading by Intel)

 Surprisingly few changes are required to implement it

 Tomasulo’s algorithm requires virtual registers anyway

 Need separate fetch units for both streams

Thread-level parallelism

36

instruction stream 1

instruction stream 2

time

fu
n

c
tio

n
a
l

u
n

its

These SMT (hyper-threads) share most of their resources:

 Caches (all levels)

 Branch prediction functionality (to some extent).

This may have negative effects:

 Threads can pollute each other’s caches

But also positive effects:

 Threads can cooperatively use the caches.

Resource sharing

37

Tree-based indexes: Hash-based indexes:

Both cases depend on hard-to-predict pointer chasing.

Use cases

38

Issue with software pre-fetching!

Idea:

 Next to the main processing thread, run a helper thread.

 They communicate with a circular array of work-ahead set of addresses.

 Purpose of the helper thread is the pre-fetch data.

 Helper thread works ahead of the main thread.

Helper threads

39

Consider the traversal of a tree-structured index:

Helper thread will not have enough time to pre-fetch.

Main thread

40

foreach input item do

read root node; prefetch level 1;

read node on tree level 1; prefetch level 2;

read node on tree level 2; prefetch level 3;

…

end for

Recall, group-based prefetching. We can apply that technique here.

Data may now have arrived in caches by the time we reach the next level.

Main thread

41

foreach group g of input items do

foreach item in g do

read root node; prefetch level 1;

end for

foreach item in g do

read node on tree level 1; prefetch level 2;

end for

foreach item in g do

read node on tree level 2; prefetch level 3;

end for

…

end for

Helper thread accesses addresses listed in a work-ahead set: e.g.,

 Purpose: load data into caches, the value of temp is not important

Technique:

 Only read data; do not affect semantics of the main thread.

 Use a ring buffer for work-ahead set and check the state of the main thread.

 Spin-lock if helper thread is too fast.

Helper thread

42

Temp += *((int *) p);

Helper thread (experiment, tree-based index)

43
Src: Zhou, Cieslewicz, Ross, Shah. Improving Database Performance on Simultaneous Multithreading Processors. VLDB 2005

There is a high chance that both threads access the same cache line at the same time.

 Must ensure in-order processing

 CPU will raise a Memory Order Machine Clear (MOMC) event when it detects parallel access

 Pipelines flushed to guarantee in-order processing

 MOMC events cause a high penalty

 Effect is worst when the helper thread spins to wait for new data

 Let helper thread work backward.

Problems

44

Helper thread (experiment, tree-based index)

45
Src: Zhou, Cieslewicz, Ross, Shah. Improving Database Performance on Simultaneous Multithreading Processors. VLDB 2005

Cache miss distribution

46
Src: Zhou, Cieslewicz, Ross, Shah. Improving Database Performance on Simultaneous Multithreading Processors. VLDB 2005

 Various papers cross-referenced in the slides

 Boncz, Zukowski, Nes. MonetDB/X100: Hyper-Pipelineing Query Execution. CIDR 2005

 Ken Ross. Selection Conditions in Main Memory. TODS 2004

 Raducanu and Boncz. Micro-Adaptivity in Vectorwise. SIGMOD 2013

 Zhou, Cieslewicz, Ross, Shah. Improving Database Performance on Simultaneous Multithreading Processors. VLDB 2005

 Lecture: Data Processing on Modern Hardware by Prof. Jens Teubner (TU Dortmund, past ETH)

 Book: Computer Architecture: A Quantitative Approach by Hennessy and Patterson

 Chapter 3 and Appendix C

References

47

