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Abstract

Using multi-query optimization for sharing common work among multiple queries requires the
identification of shareable query components. This kind of optimization is particularly effective in
distributed data stream management systems (DSMSs) with multiple continuous queries running con-
currently over long periods of time. In this paper, we introduce an abstract property tree (APT) and
its extension, an abstract property forest (APF), for representing, matching, and merging XQuery-
based queries and XML data streams in a distributed DSMS to enable the sharing of potentially
preprocessed data streams among multiple queries. The presented techniques thus allow for efficient
resource usage and provide for an increased number of queries that can be processed concurrently.

1 Introduction
Deciding whether a query result or a data set contains all the relevant information for answering another
query is strongly related to the query containment problem [16] and a common problem in many appli-
cations such as view selection [31] and semantic caching [15]. Recently, this problem also arises in data
stream sharing in distributed data stream management systems (DSMSs) [29]. In our StreamGlobe dis-
tributed DSMS [42], a set of super-peers forms a stable grid-based super-peer backbone network with an
arbitrary network topology. A super-peer in this context is a stable, powerful server with extensive query
processing capabilities that runs a grid middleware and makes its functionality available as a grid service.
Thin-peers are usually smaller and possibly mobile devices such as sensors or workstations that can join
or leave the network and act as data sources and data sinks. When joining, a thin-peer registers itself at
a super-peer in the backbone network. Subsequently, the thin-peer can register data streams and contin-
uous queries—also simply called queries or subscriptions in the following—at its super-peer. The DSMS
needs to assure that each query is processed correctly and that the corresponding result data stream
is delivered to the peer the respective query is registered at. Data stream sharing is an optimization
technique for reducing CPU load and network traffic in such a distributed DSMS by means of in-network
query processing, i. e., distributing query processing operators in the network, and multi-subscription
optimization, i. e., using one data stream to satisfy multiple similar queries.

We have shown in previous work [29] how data stream sharing can improve resource usage in a
distributed DSMS by sharing the preprocessed result data streams of previously registered queries in the
network for satisfying newly arriving queries if appropriate. However, the optimization quality of this
approach depends on the query registration sequence. Only if a newly registered query requires at most
the same data as a previously registered query, sharing the previous result for satisfying the new query
is possible. In this paper, we introduce data stream widening as an additional technique for making
the optimization quality more independent from the query registration sequence and the actual query
characteristics. The technique is able to widen an existing data stream to additionally include all the
necessary data for the new query. We also devise the inverse data stream narrowing for downsizing a
data stream in case a dependent query has been deleted from the system. Furthermore, the techniques
we introduce in this paper support a larger class of queries. While the previous approach supports flat
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Figure 1: Example DSMS scenario

selection, projection, and aggregate queries, the new approach additionally supports nested queries and
joins.

As a motivating example for the application of advanced data stream sharing with data stream
widening in StreamGlobe, we introduce an astrophysical e-science application. Consider Figure 1 which
illustrates data stream sharing once without and once with data stream widening in an exemplary network.
Here, SP0 to SP7 are the super-peers that constitute the super-peer backbone network and P0 to P4

are thin-peers. P0 is a satellite-bound telescope that detects photons and registers a data stream called
photons at super-peer SP4. This data stream contains real astrophysical data collected during the ROSAT
All-Sky Survey (RASS) [45] which we obtained through our cooperation partners from the Max-Planck-
Institut für extraterrestrische Physik1.

In StreamGlobe, we deal with streams of XML data. Stream photons complies to a DTD with the
structure shown in Figure 2. As its name implies, the data stream delivers a stream of photons detected,
e. g., by a satellite’s photon detector. Each photon in the data stream is represented by an XML element
photon that incorporates the coordinates of the corresponding photon (coord), the pulse height channel,
i. e., the detector pulse caused by the photon when hitting the detector (phc), the photon’s energy in
keV (en), and the time of its detection in seconds since the start of the observation (det_time). The
coordinates consist of the celestial coordinates of the position in the sky where the photon was detected
(cel) and the coordinates of the detector pixel where the photon actually hit the detector (det). Celestial
coordinates comprise the right ascension (ra) and the declination (dec) of a point in the sky, measured
in degrees. Detector pixel coordinates simply contain the two-dimensional coordinates of the respective
pixel on the detector plain (dx, dy). Figure 2 shows the DTD of the example data stream photons together
with its tree structure.

For simplicity, we consider only one single data stream in our example. However, multiple data
streams can be registered at one or more super-peers in the network. Also, while each element in the
example DTD except for the photon element occurs exactly once, more complex DTDs with varying
element occurrences (“?”, “+”, “*”, “|”) are also possible and can be handled accordingly.

Peers P1 to P4 in the example network are devices of astrophysicists used to register subscriptions in
the network referencing the available data stream as input. Subscriptions are registered using WXQuery,
our XQuery-based subscription language that we introduce in detail in Section 2. All queries in our
example scenario reference data stream photons as their single input. Figure 3 shows Queries 1 (q1) to 4
(q4) of the example scenario.

The stream function was newly introduced by us and indicates a possibly infinite data stream used
as input to a query. Queries q1, q2, and q4 select an area in the sky that contains the Vela supernova
remnant. Queries q1 and q2 are window-based aggregate queries returning the average energy of detected

1http://www.mpe.mpg.de
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<!ELEMENT photons (photon*)>
<!ELEMENT photon (coord, phc, en, det_time)>
<!ELEMENT coord (cel, det)>
<!ELEMENT cel (ra, dec)>
<!ELEMENT ra (#PCDATA)>
<!ELEMENT dec (#PCDATA)>
<!ELEMENT det (dx, dy)>
<!ELEMENT dx (#PCDATA)>
<!ELEMENT dy (#PCDATA)>
<!ELEMENT phc (#PCDATA)>
<!ELEMENT en (#PCDATA)>
<!ELEMENT det_time (#PCDATA)> ra dec

cel

dx dy

det

coord phc en det_time

photon*

photons

Figure 2: DTD of example data stream photons

photons in the input stream. While q1 computes the average for all photons with det_time values within
the last 60 time units and produces an aggregate value every 40 time units, q2 computes the average for
all photons with det_time values within the last 20 time units and produces an aggregate value every 10
time units. Section 2 presents the details of the window syntax in WXQuery. Furthermore, in contrast to
q2, query q1 only returns aggregate values that are greater than or equal to 1.3 keV. Query q3 is a simple
selection and projection query delivering the celestial coordinates, the energy, and the detection time
of all the photons detected in the area of the RXJ0852.0-4622 supernova remnant [7] which is situated
within the area of Vela. Query q4 is similar to q3 but filters the same larger Vela section of the sky as q1

and q2. Note that the section of the sky selected by q3 is completely contained in the section selected by
q4. Also, q3 is only interested in photons having an energy value of at least 1.3 keV whereas q4 returns
information about all the photons in the selected area of the sky and additionally includes the phc element
in the result.

Assuming that we register queries q1 to q4 one after another in ascending order, data stream sharing
without data stream widening is not applicable. The reason is that the later registered queries in this
example always need more data than all previous ones. Therefore, multi-subscription optimization has
no effect and the optimizer creates and routes a new data stream through the network for each query.
Figure 1(a) illustrates this situation.

By using data stream sharing with data stream widening, we are able to alter data streams generated
for satisfying previously registered queries to additionally contain all the necessary data for the new query.
This yields a larger data stream that constitutes the union of the input data of all dependent queries. We
can then replicate the stream at appropriate super-peers in the network and further process each of its
copies to form the query result for each dependent query. Figure 1(b) shows the result for our example
scenario. Note that now, with the exception of q1 which is registered first, each newly registered query
shares the widened result data stream of a previously registered query. The effect can be seen when
comparing the number of arrows indicating the data flow in the backbone network in Figures 1(a) and
1(b). Without data stream widening, there are nine arrows in the backbone network, with data stream
widening there are only five.

In detail, we make the following contributions in this paper:

• We introduce the Abstract Property Tree (APT), a structure used for representing, matching, and
merging queries and data that naturally supports data stream widening and data stream narrow-
ing (Section 3). We focus on queries over XML data streams formulated in our XQuery-based
subscription language WXQuery (Section 2). We initially consider selection, projection, and ag-
gregate queries and subsequently introduce an extension called Abstract Property Forest (APF) to
additionally support join queries (Section 5).

• We show how to translate an arbitrary WXQuery into a corresponding APT and how to translate
an APT back into a corresponding WXQuery. We define inference rules for the translation of a
WXQuery into an APT and query templates for the inverse translation (Section 3). Further, we
extend our results to APFs (Section 5).

• We present an algorithm for matching and merging two APTs, yielding a new APT that repre-
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<photons>
{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and
coord/cel/ra <= 138.0 and
coord/cel/dec >= -49.0 and
coord/cel/dec <= -40.0]

|det_time diff 60 step 40|
let $a := avg($w/en) where $a >= 1.3
return <avg_en> { $a } </avg_en> }

</photons>

(a) Query 1 (q1)

<photons>
{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and
coord/cel/ra <= 138.0 and
coord/cel/dec >= -49.0 and
coord/cel/dec <= -40.0]

|det_time diff 20 step 10|
let $a := avg($w/en)
return <avg_en> { $a } </avg_en> }

</photons></photons>

(b) Query 2 (q2)

<photons>
{ for $p in stream("photons")/photons/photon

where $p/en >= 1.3
and $p/coord/cel/ra >= 130.5
and $p/coord/cel/ra <= 135.5
and $p/coord/cel/dec >= -48.0
and $p/coord/cel/dec <= -45.0

return
<rxj>

{ $p/coord/cel/ra }
{ $p/coord/cel/dec }
{ $p/en } { $p/det_time }

</rxj> }
</photons>

(c) Query 3 (q3)

<photons>
{ for $p in stream("photons")/photons/photon
where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0
and $p/coord/cel/dec >= -49.0
and $p/coord/cel/dec <= -40.0

return
<vela>

{ $p/coord/cel/ra }
{ $p/coord/cel/dec }
{ $p/phc } { $p/en } { $p/det_time }

</vela> }
</photons>
</photons>

(d) Query 4 (q4)

Figure 3: Example queries

sents the union of the original APTs (Section 4) and generalize the algorithm for use with APFs
(Section 5).

• Some preliminary performance experiments conducted using our StreamGlobe prototype implemen-
tation assess the effectiveness of data stream sharing with data stream widening based on APTs
and APFs (Section 6).

2 The WXQuery Language
In StreamGlobe, we use the Windowed XQuery (WXQuery) subscription language to register subscrip-
tions over XML data streams. WXQuery is a fragment of XQuery [46] augmented with support for
window-based operators. The basic idea and the semantics behind our window extensions are similar to
another recent proposal for XQuery window extensions [9].

In Definition 2.1 below, α is a WXQuery expression and χ denotes a condition. A tag name is denoted
by t. Further, $x and $y are variables representing XML trees, where $y can also start with a function
call to reference a document node or the stream node of a data stream such as stream("photons") in the
example subscriptions. A variable representing an aggregate result is denoted by $a. The variable $z
can represent any of the three kinds of variables $x, $y, or $a as described above. We use π to denote
a relative path that only employs the child axis (“/”). It does not include wildcards (“*”), conditions
(“[p]”), or other axes (e. g., “//”). A relative path π differs from π in that it can also contain conditions.
An aggregate function is denoted by Φ, i. e., Φ ∈ {min, max, sum, count, avg}. In an actual query, each
occurrence of the patterns introduced above must be instantiated to an actual object, e. g., each α needs
to be instantiated to an actual WXQuery expression and each π needs to be instantiated to an actual
relative path. Patterns are treated like non-terminals in grammar productions, i. e., multiple occurrences
of the same pattern in an expression can and generally will be instantiated to different actual objects. For
example, the two occurrences of α in the conditional expression (Expression 4 in Definition 2.1 below)
will in general be instantiated to different expressions, one for the if-then part and one for the else part.

We use a syntax resembling regular expressions to mark optional or recurring parts of a query. Ex-
pressions enclosed in [[ ]]?, [[ ]]∗, or [[ ]]+ in the definition are optional, can occur zero or more times, or can
occur one or more times, respectively. A vertical bar (|) indicates an alternation. An expression of the
form αi1,...,in represents a WXQuery expression from a restricted set of expressions. For example, α1,2
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stands for any one of the two element constructor expressions numbered 1 and 2 in the definition below
and α3,4,5,6,7 stands for any one of the remaining expressions numbered 3 to 7.

Definition 2.1 (WXQuery) The WXQuery subscription language comprises all subscriptions that con-
sist only of the following expressions:

1. <t/>
(empty direct element constructor)

2. <t> [[α1,2 | {α3,4,5,6,7}]]∗ </t>
(direct element constructor)

3. [[for $x in $y[[/π]]?[[|count Δ [[step μ]]?| | |[[/]]?π diff Δ [[step μ]]?|]]? |
let $a := Φ($y[[/π]]?)]]+ [[where χ]]? return α
(FLWR expression)

4. if χ then α else α
(conditional expression)

5. $y/π
(output of subtrees reachable from node $y through path π)

6. $z
(output of subtree rooted at node $z)

7. ([[α[[,α]]∗]]?)
(sequence) �

The FLWR expression in the WXQuery definition introduces our new syntax for expressing data
windows, e. g., for use with window-based aggregate operators. The definition of a data window is enclosed
in “|” characters. Count-based windows—indicated by the keyword count—contain a fixed number of
items given by the numeric value of Δ. Optionally, a step size μ determining the update interval of the
data window can be specified. For example, the window |count 20 step 10| defines a data window that
always contains 20 data items and, during each update, removes the 10 oldest entries from the window
while adding the next 10 new data items arriving on the stream. If omitted, the step size defaults to the
value of Δ, meaning the contents of the window are completely replaced by new ones during each update.

The situation is analogous for time-based windows except that Δ indicates the size of the window in
time units and the step size indicates the time interval between two successive data windows. Again, the
step size defaults to Δ if omitted. Time-based windows can only be applied on data streams that are
sorted according to the values of a particular reference element that is used to control the window. This
premise could be somewhat relaxed to a fuzzy order by requiring that a fixed sized buffer is sufficient to
derive the total order. An example for a time-based window is |det_time diff 60 step 40| in query q1.
Note that the path inside the window is not meant to be evaluated yielding a sequence as defined by the
conventional XQuery semantics. Rather, the path specifies the reference element controlling the window.
The path to the reference element is either absolute, starting at the data stream root element (photons
in our example), or relative to the context node of the data window (photon in the example queries).

In the case of subscriptions employing only selection and projection operators, the schema of a data
stream generated during in-network query processing can differ from the schema of the corresponding
original data stream only by some missing elements which have been removed by a projection operator.
Selection operators do not affect the data stream schema at all. Any other more complex data stream
schema transformations such as the construction of new elements in the result returned by a query as
well as the reordering and renaming of input stream elements in the query result are postponed to a
postprocessing step. The postprocessing takes place at the super-peer that is connected to the peer that
registered the original subscription. The result of the postprocessing is delivered to its final destination
and is not considered for further reuse in the network. The only exception are subscriptions containing
aggregate or join operators. In this case, a result data stream with a generic schema is produced by
in-network query processing. The generic schema consists of a generic enclosing element for each data
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stream item in the result data stream and one generic subelement for each aggregate or join result value
computed in the subscription.

Up to now, we restrict the discussion to queries with at most one data window per input data stream.
We require each result item returned by a query to contain at least one element of the query input or
an aggregate value based on elements of the query input. Thus, we can guarantee that the result of
in-network query processing contains all the necessary information for postprocessing. An example for an
invalid query would be a query that returns an empty tag for each photon with an energy value above a
certain threshold. Since attributes in XML data can always be converted to corresponding elements, we
restrict ourselves to dealing with elements. For evaluating continuous WXQueries over XML data streams,
we use an extended version of the FluX query engine [22, 23] that supports our window extensions.

3 The Abstract Property Tree (APT)
In this section, we define the abstract property tree (APT), a data structure used for representing,
matching, and merging queries and data as needed for data stream sharing and data stream widening.
We furthermore show how to translate a WXQuery into a corresponding APT and vice versa.

3.1 Definition
An abstract property tree (APT) consists of two main parts. The first part is a path tree representing all
paths referenced in the corresponding query and the second part is a set of annotations. The path tree
reflects the structural aspects of the query while the annotations reflect its content-based aspects, e. g.,
selection predicates, join predicates, data window definitions, and aggregates. Note that an APT is an
abstract representation of a query, i. e., it represents only the relevant parts of the query as needed for
data stream sharing or, more generally, query result sharing. With the exception of aggregate and join
queries, APTs abstract from any complex restructuring of the query result relative to the query inputs
as described in Section 2. This abstraction makes the difficult task of matching and merging queries and
data feasible in practice.

Definition 3.1 (Query abstraction) The abstraction q̂ of a query q reflects all the properties of q
that are relevant for in-network query processing. Compared to the original query q, the corresponding
abstraction q̂ does not contain any query details that are postponed to the postprocessing step, such as
any restructuring of the query result involving element construction, reordering, or renaming. Let q be
a query, APT(x) a function that returns the corresponding APT of a query x, and Query(y) a function
that returns the corresponding query of an APT y. Then, the abstraction q̂ of q is obtained as follows:

q̂ := Query(APT(q)) �

Figure 4 shows the APTs of the four example queries of Figure 3. The path tree in each case reflects
all the paths referenced in the corresponding query. The APT of q4 in Figure 4(d) for example contains
the path /photons/photon/phc because the phc element is returned and therefore referenced in the query.
However, the phc element does not occur in the APTs of queries q1 to q3 because these queries do not
reference this element. Note that all paths referenced in a query are always expanded to absolute paths
starting at the data stream root element in the corresponding APT.

The boxes in Figure 4 represent annotations that augment the structural information of the path tree
with additional content-based information. There are three types of annotations reflecting the charac-
teristics of the three content-based operators for selection (σ), window construction (ω), and aggregation
(γ).

Selection annotations are associated either with output elements in the path tree, i. e., with elements
that are actually contained in the query result, or with aggregate annotations denoting returned aggregate
values. A selection annotation indicates under which condition the corresponding element or aggregate
value is returned by the query. Output elements are marked with bullets in an APT. In Figure 4(c), for
example, the output elements are ra, dec, en, and det_time. Queries returning aggregate values are special
since, in their APTs, bullets also mark the aggregate annotations of the aggregate values returned by the
query as shown in Figures 4(a) and 4(b). Also, Figures 4(c) and 4(d) indicate that common selection
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(d) APT of q4 (tq4 )

Figure 4: APTs of example queries from Section 1

annotations of multiple elements can be pulled up to a common ancestor node. Pulled-up annotations
are implicitly considered valid for all output elements further below in the path tree as long as these do
not have any other selection annotations associated with them.

Window annotations are always associated with the window root element, i. e., the element whose
instances are actually contained in the window. In q1 and q2, photon is the window root element. Two
different kinds of selection predicates can be associated with window annotations. Predicates in the
location steps of a window-defining XPath expression filter the items selected by the XPath expression
before the items enter the data window. We call selection annotations representing such predicates window
preselection annotations since the selection takes place before window construction. The symbol pre-σ
indicates these annotations which appear in the APTs of q1 and q2 in Figure 4. Furthermore, predicates
in a where condition filter the entire data window after it has been constructed in accordance with
XQuery existential semantics, treating the window contents as a sequence. We call selection annotations
representing these predicates window postselection annotations since the selection takes place after window
construction. The symbol post-σ indicates such annotations.

Finally, aggregate annotations are always associated with the aggregated element, which is en in q1

and q2. Like window annotations, aggregate annotations can be associated with two different kinds of
selection annotations. An aggregate preselection annotation reflects a selection predicate occurring within
the XPath expression that references the aggregated element in the argument of the aggregate function
call. Such a predicate filters elements before the actual aggregate computation, i. e., elements not fulfilling
the predicate of the aggregate preselection annotation do not contribute to the aggregate. Furthermore,
an ordinary selection annotation associated with an aggregate annotation indicates that the aggregate
result value is only returned if the respective condition is satisfied. Figure 4(a) shows such an annotation
indicating that the average energy of photons in the specified data window is only to be returned if it
is greater than or equal to 1.3 keV. We denote aggregate preselection annotations by the same symbol
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pre-σ as window preselection annotations. The meaning of the overloaded symbol is unambiguous in an
actual APT since the corresponding annotation is either associated with a window annotation or with an
aggregate annotation.

For simplicity, we allow window postselection conditions to appear only in the where clause of the
FLWR expression that defines the corresponding window. Note that element references in annotations
are actually absolute paths starting from the data stream root element. In our figures, however, we
only show the element name for better readability. Projection operators are structural operators which
remove elements from the query inputs. Their effects are therefore already reflected by the path tree. If
a query removes elements using a projection, these elements do not appear in the path tree of that query.
Thus, there is no projection annotation. We introduce an additional join annotation for representing join
operators in Section 5.

Definition 3.2 (Abstract Property Tree (APT)) The abstract property tree (APT) of a query q is
denoted tq := (P, A, O, id, d) and consists of the set of referenced paths P , the set of annotations A, and
the set of returned paths and aggregate values O of q, as well as the identifier id and the DTD d of q’s
input stream or input document.

Structural part The set P contains all the paths referenced in the corresponding query. The APT
internally represents these paths as a tree with merged common prefixes as shown in Figure 4, i. e., each
path element occurs as a tree node exactly once. The tree thus constitutes a prefix tree where each node
represents an element occurring in the paths in P . A node v1 is the parent of a node v2 in the tree if
the element represented by v1 is the parent of the element represented by v2 in a path in P . The root
of the tree is the root of the query input data stream or document. We expand relative paths referenced
in the query to absolute paths before adding them to P . The construction of the path tree uses the
DTD d to preserve the stream or document order of the elements in the tree. The set O of returned
paths and aggregate values identifies the elements in the path tree that we need to mark as output
elements. Aggregate values in O, indicated by a path with an aggregate function applied to it, cause
the corresponding aggregate annotation to be marked with an output marker. As with P , we expand all
relative paths to absolute paths before adding them to O.

Content-based part An annotation a := (τ, C, R) in an abstract property tree has a type τ ∈
{σ, ω, γ, pre-σ, post-σ} indicating a selection annotation, a window annotation, an aggregate annotation,
a window preselection annotation or an aggregate preselection annotation, and a window postselection
annotation, respectively. The annotation further consists of its contents C. In case of a selection annota-
tion, a window preselection annotation, an aggregate preselection annotation, or a window postselection
annotation, C is a set of selection predicates. The predicates in the set are meant to be conjunctively
combined. A window annotation representing a count-based window contains the window type, the win-
dow size, and the step size of the window. In case of a time-based window, the annotation additionally
contains the absolute path to the reference element of the window. An aggregate annotation contains
the corresponding aggregate function. Finally, R denotes the parents of the annotation, i. e., the objects
the annotation is associated with. For selection annotations, R is a set that can contain elements in the
path tree as well as aggregate annotations. For window annotations and for aggregate annotations, the
parent always is a single element in the path tree. For window preselection and window postselection an-
notations, the parent always is a window annotation. For aggregate preselection annotations, the parent
always is an aggregate annotation. �

3.2 Translating WXQueries into APTs
In this section, we show how to translate an arbitrary WXQuery into a corresponding APT.

3.2.1 Assembling the Path Tree

We assemble the path tree of a query by first extracting all paths occurring in the respective query.
Paths in a query can occur in for and let clauses, in XPath predicates, in where clauses, in window
definitions for time-based data windows, in conditional expressions, as parameters of aggregate function
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calls, and in return clauses or as standalone path expressions. Each path in a query is either absolute or
relative. The query parser extracts all paths occurring in a query and expands each relative path to the
corresponding absolute path. In case of paths in XPath predicates and time-based data windows, this
is done by concatenating the absolute path of the corresponding context element and the relative path
in the predicate or window definition. In all other cases, relative paths start with a variable that can be
recursively expanded using a symbol table containing the bindings for all variables in the query.

After extracting all the paths in a query and converting relative to absolute paths, we merge the paths
into one path tree. We add the paths to the tree one by one. The process identifies common prefixes
which occur in the resulting tree only once. It also preserves the document or stream order. The order
of elements on each level of the path tree, from left to right, reflects their order in the query input. Note
that up to now, we assume that each query has exactly one input stream. If a query has more than one
input stream, we need to build one path tree for each input stream. We extend our solution to this class
of queries in Section 5.

Example 3.1 As an example for path tree assembly consider q1 in Figure 3(a) and its APT tq1 in Fig-
ure 4(a). The query contains the absolute path /photons/photon and the relative paths coord/cel/ra and
coord/cel/dec in the XPath predicate, det_time in the reference element specification of the time-based
data window, and $w/en as parameter of the aggregate function call. The context element for the XPath
predicate and the data window definition is photon. Therefore, we expand the relative paths to ab-
solute paths by prepending /photons/photon, yielding the absolute paths /photons/photon/coord/cel/ra,
/photons/photon/coord/cel/dec, and /photons/photon/det_time. The variable $w is bound to a sequence of
photon elements, i. e. the photons contained in the current data window. We therefore expand the relative
path in the aggregate function call by replacing $w also with /photons/photon yielding /photons/photon/en
as the final path. When merging the resulting absolute paths into one path tree, we get /photons/photon
as common prefix of all paths and further /photons/photon/coord/cel as common prefix of the two paths
in the XPath predicate. The APT of Figure 4(a) contains the resulting path tree. �

3.2.2 Determining the Annotations

The next step in APT construction is to determine the annotations. We consider this issue for each of the
three main types of annotations, i. e., selection annotations, window annotations, and aggregate annota-
tions, as well as for the three subtypes of selection annotations, i. e., window preselection annotations,
aggregate preselection annotations, and window postselection annotations.

Selection annotations. We must associate each output element of the path tree and each aggregate
annotation representing a returned aggregate value with the condition under which the corresponding
element or aggregate value is returned by the query. This condition depends on the context of the
respective output element or aggregate value. The relevant conditions can appear as XPath predicates
in the location steps of certain XPath expressions, in where clauses of FLWR expressions (expression 3 in
Definition 2.1), and in conditional expressions (expression 4 in Definition 2.1). Since FLWR expressions
and conditional expressions can be nested, the query parser needs to keep track of the current context for
each output element. We do this by storing the predicates defined in each FLWR expression or conditional
expression in a list and pushing this list on a stack. Whenever an output element is encountered, all
predicates in all lists on the stack are conjunctively combined, thus forming the predicate for this element’s
selection annotation. For conditional expressions, the predicate defined in the expression is used for the
then part and the negation of this predicate is used for the else part. When the scope of a FLWR
expression or conditional expression ends, the corresponding predicate list is popped from the stack and
will therefore not be part of the selection annotations of subsequent output elements. If the query returns
several output elements under the same condition, we try to avoid associating the selection annotation
with each output element individually. This is possible by pulling up the selection annotation to a common
ancestor node as long as no other output elements with other selection annotations occur between this
ancestor node and the output elements.

Aggregate annotations. Whenever the query parser discovers a call of an aggregate function, it
creates an aggregate annotation indicating the type of the aggregation (min, max, sum, count, or avg) and
associates it with the aggregated element referenced in the aggregate function argument. We associate
a corresponding aggregate preselection annotation with the aggregate annotation if the query filters the
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sequence of elements to be aggregated prior to aggregation.
Window annotations. Whenever the query parser detects a window definition, it creates an accord-

ing window annotation and associates it with the context element of the window, i. e., the element the
window is defined on. Each window annotation contains the window type (count-based or time-based),
the reference element (only in case of a time-based window), the window size, and the step size. Option-
ally, we associate a window preselection annotation, a window postselection annotation, or both with the
window annotation if indicated by the query.

We introduce an additional join annotation in Section 5.

Example 3.2 The APTs of q3 and q4 in Figures 4(c) and 4(d) show examples for selection annotation
pull-up. In both queries, all output elements are returned under the same condition. Therefore, the
corresponding selection annotation is not associated with each output element individually but pulled up
to the first common ancestor node, which is photon in both cases.

In the APT of q2 in Figure 4(b), the window annotation is associated with the window context element
photon. Furthermore, a window pre-selection annotation representing the XPath predicate of the query
is associated with the window annotation. Finally, an aggregate annotation marks the en element as the
aggregated element using an avg aggregate. The aggregate annotation also contains an output marker
since the corresponding aggregate value is returned by the query. The situation is similar for the APT of
q1 in Figure 4(a). The only difference, besides different values in the window annotation, is the additional
selection annotation associated with the aggregate annotation. It indicates that the query returns the
corresponding aggregate value only under the annotated condition. �

3.2.3 Determining the Output Elements

All elements occurring in the path tree of a query are input elements of that query, i. e., they must be
present in the query input—possibly only under certain conditions expressed by selection annotations.
Otherwise, the query will not be answered correctly. The output elements of a query are the elements
returned by the query, i. e., the elements contained in the query result. Except for aggregate values, each
output element also is an input element. However, there can be input elements which are no output
elements, e. g., elements that only occur in selection predicates but are never returned by the query. We
mark output elements with bullets in APTs as in Figure 4. A special case occurs for queries returning
aggregate values. Here, we mark the corresponding aggregate annotations with bullets.

Determining the output elements of a query is a little more difficult than assembling the path tree.
The reason is that for building the path tree, we can treat all paths occurring in the query the same. But
for determining output elements, we need to decide whether an element referenced in a query q is actually
returned by the abstraction q̂ of that query. Starting with q as the initial expression α, we determine
the set of output elements Oq of q recursively as follows. If α is a path expression as in expressions 5
or 6 of Definition 2.1, then add the element referenced by α to Oq. If α is a sequence of expressions
as in expressions 2 or 7 of Definition 2.1, recursively process each expression in the sequence. If α is a
conditional expression as in expression 4 of Definition 2.1, recursively process the expressions in both
branches of α. If α is a FLWR expression as in expression 3 of Definition 2.1, recursively process the
expression returned by α.

Currently, we perform the restructuring of the result data stream of structure-preserving queries by
applying the original query to the data stream created by in-network query processing. Consequently,
we need to assure that each input element required by the original query is present in this stream. We
achieve this by additionally marking all input elements of a structure-preserving original query as output
elements in the corresponding APT. An optimized approach where elements referenced but not returned
by the query are not marked as output elements and remain in the APT only as input elements is possible.
This requires rewriting the original query to obtain the correct query for restructuring. The rewriting
needs to remove any elements referenced in but not returned by the original query which are no longer
needed during restructuring. This can be the case, e. g., because the elements only occur in a selection
predicate that has already been evaluated during in-network query processing. The predicate is therefore
assured to be satisfied for all remaining data items. This optimization further reduces network traffic
for queries for which the set of referenced elements is a proper superset of the set of output elements.
Note that this is not an issue for our example queries since q1 and q2 are not structure-preserving and q3
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and q4 do not meet the above requirement. Rewriting original queries to generate complex restructuring
queries is a matter of future work.

Example 3.3 In the APTs of q1 and q2 in Figures 4(a) and 4(b), we mark the aggregate annotation
with an output marker since these queries return the corresponding aggregate value. The set of output
elements of q3 is {ra, dec, en, det_time} and that of q4 is {ra, dec, phc, en, det_time}. Note that, in our
current implementation, the set of output elements of q3 would not change if the query would not return
the elements ra, dec, or en. Also, the set of output elements of q4 would not change if the query would
not return ra or dec. This is due to the fact that these elements occur in selection predicates of the
respective queries. With the optimization described above, however, these elements would be removed
from the set of output elements if they were not returned by the query. �

3.2.4 Inference Rules

In this section, we introduce formal rules for the translation of a WXQuery into a corresponding APT.
There is one rule for each WXQuery expression of Definition 2.1. We use the inference rule notation of the
XQuery formal semantics specification [47]. A similar notation has previously been used to describe rules
for projecting XML documents to reduce the memory requirements of XML query processors [35, 36].
The judgment

Env � α ⇒ (P, A, O, id, d)

holds if and only if, under the environment Env , the expression α references the paths in P , defines
the annotations in A, returns the paths and aggregate values in O, and references an input source,
i. e., a data stream or a document, with identifier id and DTD d. The environment Env holds the
symbol table needed for converting relative paths in a WXQuery to absolute paths. Note that all paths
are expanded to absolute paths using the variable bindings from Env . The set of returned paths O
contains absolute paths to returned elements, e. g., /photons/photon/en, as well as absolute paths to
aggregated elements of returned aggregate values together with the corresponding aggregate function
calls, e. g., avg(/photons/photon/en). We determine the input stream identifier or document name id
and its corresponding DTD d during a pre-processing phase by scanning the query for any stream or
doc function calls which contain the input source identifier as their parameter. We use the input source
identifier to retrieve the corresponding DTD from a metadata repository. Therefore, id and d are already
present and simply forwarded in the following rules. Inference rules are of the form

premise1 . . . premisen

conclusion

where all premises and the conclusion are judgments of the above form. Additionally, premises may
constitute expressions of the form Env ′ = Env + ($var ⇒ Path) that extend the environment Env by
adding the binding of the variable $var to the path represented by Path, thus yielding the extended
environment Env ′. An inference rule expresses that, if all premises hold, then the conclusion holds as
well.

We now give the inference rules for each of the WXQuery expressions of Definition 2.1. Since each
APT has exactly one identifier id and exactly one DTD d, rules 2, 7, and 10 assume that all subexpressions
have the same values for id and d. As id and d might also be undefined (⊥) in certain subexpressions, we
implicitly ignore undefined values unless id and d are undefined in all subexpressions of an expression.

Empty direct element constructor The empty direct element constructor does not reference or
return any paths. It further does not induce any annotations.

Env � <t/> ⇒ (∅, ∅, ∅,⊥,⊥)
(1)

This inference rule has no premises and therefore, nothing is written above the rule.
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Direct element constructor The direct element constructor contains zero or more WXQuery ex-
pressions. The additions to the APT induced by the direct element constructor are the unions of the
additions induced by the enclosed WXQuery expressions. Since an APT always references exactly one
input data stream or document, the input identifier id and the DTD d are the same in all expressions,
ignoring undefined values as described above.

Env � α1 ⇒ (P1, A1, O1, id, d) . . . Env � αn ⇒ (Pn, An, On, id, d)
Env � <t>α1 . . . αn</t> ⇒ (

⋃n
i=1 Pi,

⋃n
i=1 Ai,

⋃n
i=1 Oi, id, d)

(2)

Note that we have rephrased the WXQuery expression for direct element constructors in the inference
rule compared to the WXQuery definition to better support the inference rule notation. Although not
explicitly shown in the inference rule for simplicity, an expression αi still needs to be enclosed in curly
braces if representing one of the expressions 3 to 7 of Definition 2.1.

FLWR expression We split the inference rule for FLWR expressions into four separate rules. Three
rules cover for loops without data windows and with count-based and time-based data windows, respec-
tively. The fourth rule covers let expressions. For better readability, we use shortcuts for certain patterns
in the following inference rules. The shortcut Path1 denotes the path $y[[/π]]? bound to a variable in a
for loop, Path2 represents the window reference element [[/]]?π of a time-based data window, and Path3

stands for the path $y[[/π]]? in the argument of an aggregate function call.
The path function used in the inference rules can be applied to any path or aggregate function call.

If the argument path is a relative path, the function converts it to the corresponding absolute path.
Further, the function removes any conditions from the argument path before returning it. Any aggregate
function that is applied to the argument path is preserved by the path function. The path function can be
applied to paths and conditions. It leaves an absolute argument path unchanged and expands a relative
argument path to the corresponding absolute path. If the argument path contains any conditions, the
paths referenced in these conditions are also extracted, expanded, and returned. The return value of path
therefore is a set of paths. When applied to a condition, the path function extracts all the paths referenced
in the condition and expands any relative paths to the corresponding absolute paths. When encountering
an aggregate function call, the function expands a relative path in the aggregate function argument to
an absolute path before returning it. The aggregate function call is removed. The cond function can be
applied to paths and conditions. When applied to a path, it extracts all XPath conditions contained in
the argument path. Also, the function expands any relative paths in these conditions to the corresponding
absolute paths. The return value of the cond function therefore is a set of conditions. When applied to
a condition, the function expands any relative paths in the condition to absolute paths. Finally, the id
and dtd functions take a path as argument. If the path starts with a reference to a stream or document
node (i. e., with a call to the stream or doc function), the id function returns the corresponding stream
identifier or document name. The dtd function uses the stream identifier or document name to retrieve
the corresponding DTD of the referenced stream or document from a metadata repository. The stream
identifier or document name is read from the argument of the stream or doc function, respectively. If the
argument path does not reference a stream or document node, the id and dtd functions return ⊥. This is
safe since we require each query and therefore also each APT to reference exactly one input data stream
or document. We deal with queries having multiple inputs in Section 5.

A for loop without a window operator references the path bound to the new variable and the paths
in the optional XPath and where conditions. These conditions also define the selection annotation which
is associated with the set of returned paths and aggregate values. If the conditions are not present in the
query, the corresponding paths and annotations are not generated. The set of returned paths contains
the paths returned by the WXQuery expression α in the return clause. The first premise in the rule
reflects the variable binding in the for loop.

Env ′ = Env + ($x ⇒ path(Path1))
Env ′ � α ⇒ (P, A, O, id, d)

Env � for $x in Path1 where χ return α

⇒ (P ∪ path(Path1) ∪ path(χ),
A ∪ {(σ, cond(Path1) ∪ cond(χ), O)}, O, id(Path1), dtd(Path1))

(3)
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The above rule reflects the optimized translation of a WXQuery into an APT in the sense described
in the previous section on determining the output elements. If the original query should be used for
restructuring the resulting intermediate result data stream, then path(Path1) and path(χ) need to be
added to the set O of returned paths and to the set of parents of the selection annotation that is added
to A.

The next rule describes the translation of a for loop with a count-based data window. The only change
compared to the previous rule affects the set of annotations. This set now contains a window annotation
for the count-based data window. The window annotation is associated with the element referenced by
Path1. Furthermore, we need to break up the selection annotation into a window preselection annotation
for the conditions contained in Path1 and a window postselection annotation for the condition in the
where clause. Both selection annotations are associated with the window annotation ω. The selection
annotations are optional, just as the corresponding conditions in the query.

Env ′ = Env + ($x ⇒ path(Path1))
Env ′ � α ⇒ (P, A, O, id, d)

Env � for $x in Path1 |count Δ step μ| where χ return α

⇒ (P ∪ path(Path1) ∪ path(χ),
A ∪ {(ω, (count, Δ, μ), path(Path1)),

(pre-σ, cond(Path1), ω), (post-σ, cond(χ), ω)}, O, id(Path1), dtd(Path1))

(4)

In the same way as in the previous rule, the rule without optimization additionally adds the paths in
path(Path1) and path(χ) to the set O of returned paths.

The inference rule describing the translation of for loops with time-based data windows is similar to
the previous rule for count-based windows. The only difference is the additional handling of a path Path2

which identifies the window reference element. The window reference element path occurs in the set of
referenced paths and in the window annotation.

Env ′ = Env + ($x ⇒ path(Path1))
Env ′ � α ⇒ (P, A, O, id, d)

Env � for $x in Path1 |Path2 diff Δ step μ| where χ return α

⇒ (P ∪ path(Path1) ∪ path(Path2) ∪ path(χ),
A ∪ {(ω, (diff, path(Path2), Δ, μ), path(Path1)), (pre-σ, cond(Path1), ω),

(post-σ, cond(χ), ω)}, O, id(Path1), dtd(Path1))

(5)

The rule without optimization additionally adds the paths in path(Path1), path(Path2), and path(χ) to
the set O of returned paths.

Finally, the following inference rule defines the translation of let expressions which are used to bind
the result of an aggregate function call to a variable in WXQuery. The first premise of the rule reflects the
binding of the new variable. The rule adds the path Path3 of the aggregated element and, if present, the
paths referenced in the condition to the set of referenced paths. It further adds an aggregate annotation to
the set of annotations. The aggregate annotation is associated with the aggregated element. Optionally,
an aggregate preselection annotation is associated with the aggregate annotation and an ordinary selection
annotation is associated with the set of returned elements and aggregate values in O.

Env ′ = Env + ($a ⇒ Φ(path(Path3)))
Env ′ � α ⇒ (P, A, O, id, d)

Env � let $a := Φ(Path3) where χ return α

⇒ (P ∪ path(Path3) ∪ path(χ),
A ∪ {(γ, Φ, path(Path3)), (pre-σ, cond(Path3), γ), (σ, cond(χ), O)},

O, id(Path3), dtd(Path3))

(6)

In the non-optimized case, the rule additionally adds the paths in path(Path3) and path(χ) to the set O
of returned paths and consequently also to the set of parents of the selection annotation added to A.
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Conditional expression A conditional expression returns the returned paths and aggregate values
of α1 under the condition χ and those of α2 under the condition ¬χ. The inference rule adds the
corresponding selection annotations to the set of annotations A. It further adds the paths referenced in
the condition to the set of referenced paths P . Apart from that, the rule propagates the referenced paths,
the annotations, and the returned paths and aggregate values of α1 and α2.

Env � α1 ⇒ (Pα1 , Aα1 , Oα1 , id, d)
Env � α2 ⇒ (Pα2 , Aα2 , Oα2 , id, d)

Env � if χ then α1 else α2

⇒ (Pα1 ∪ Pα2 ∪ path(χ),
Aα1 ∪ Aα2 ∪ {(σ, cond(χ), Oα1), (σ, cond(¬χ), Oα2)}, Oα1 ∪ Oα2 , id, d)

(7)

The non-optimized version of the above rule additionally adds the paths in path(χ) to the set of returned
paths Oα1 ∪Oα2 and to each of the sets of parents of the two selection annotations added to Aα1 ∪Aα2 .

Output of subtrees reachable from node $y through path π A path expression of this form adds
the corresponding path to the sets of referenced and returned paths and generates an additional selection
annotation if the path contains predicates. In the inference rule, Path4 represents the pattern $y/π.

Env � Path4

⇒ (path(Path4), {(σ, cond(Path4), {path(Path4)})}, {path(Path4)},⊥,⊥)

(8)

This rule has no premises.

Output of a subtree rooted at node $z The inference rule for this expression adds the path
referenced by $z to the set of returned paths. The path may also contain an aggregate function call.
Note that we do not need to add the path to the set of referenced paths since this will be done when
processing the expression that defines the variable binding.

Env � $z ⇒ (∅, ∅, {path($z)},⊥,⊥)
(9)

This rule has no premises.

Sequence The inference rule for a sequence propagates the union of the sets of referenced paths,
annotations, and returned paths and aggregate values of all expressions contained in the sequence.

Env � α1 ⇒ (P1, A1, O1, id, d) . . . Env � αn ⇒ (Pn, An, On, id, d)
Env � (α1, . . . ,αn) ⇒ (

⋃n
i=1 Pi,

⋃n
i=1 Ai,

⋃n
i=1 Oi, id, d)

(10)

Note that, similar to the rule for direct element constructors, we have rephrased the WXQuery expression
for sequences in the inference rule compared to the WXQuery definition to better support the inference
rule notation.

Example 3.4 We use query q1 of Figure 3(a) on page 4 to illustrate the translation of a WXQuery into
a corresponding APT following the inference rules introduced above. We start by applying Rules 5 and 6.
Note that the four decomposed rules for FLWR expressions always need to be applied in combination
since they are actually responsible for handling a single language construct, namely Expression 3 in
Definition 2.1 on page 5. We decomposed the rule for FLWR expressions only to make the individual
rules more concise.

First, the Rules 5 and 6 update the environment Env yielding the extended environment Env ′ by
adding $w ⇒ stream("photons")/photons/photon and $a ⇒ avg(stream("photons")/photons/photon/en).
Using the updated environment whose contents are needed by the path, path, and cond functions during
the expansion of relative paths to absolute paths, the returned expression <avg_en> { $a } <avg_en> is
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evaluated next. This is the task of Rule 2 which in turn triggers Rule 9 on the returned variable $a.
Rule 9 adds the aggregate function call avg(stream("photons")/photons/photon/en) to the set of returned
paths and aggregate values O. The set of referenced paths P and the set of annotations A remain empty.
Further, the input stream identifier id and the input stream DTD d remain undefined. Afterwards, Rule 2
simply returns the current state to Rules 5 and 6 for handling the FLWR expression.

Applying Rule 5, Path1 becomes stream("photons")/photons/photon and Path2 becomes det_time.
Further, the value of Δ is 60 and the value of μ is 40. The rule adds the following paths to P :

• stream("photons")/photons/photon
which corresponds to Path1,

• stream("photons")/photons/photon/coord/cel/ra
and
stream("photons")/photons/photon/coord/cel/dec
resulting from the condition within Path1,

• stream("photons")/photons/photon/det_time
which is the absolute path of Path2, and

• stream("photons")/photons/photon/en
reflecting the path referenced via $a in the where condition.

The rule further adds to the set of annotations A the window annotation

(ω, (diff, stream("photons")/photons/photon/det_time, 60, 40),
stream("photons")/photons/photon)

and subsequently the window preselection annotation

(pre-σ, {stream("photons")/photons/photon/coord/cel/ra >= 120.0 ∧
stream("photons")/photons/photon/coord/cel/ra <= 138.0 ∧
stream("photons")/photons/photon/coord/cel/dec >= -49.0 ∧
stream("photons")/photons/photon/coord/cel/dec <= -40.0}, ω).

The set O of output elements remains unchanged to that returned by Rule 2 before. Eventually, id is set
to photons and d is set to the DTD of stream photons shown in Figure 2 on page 3.

Applying Rule 6, Path3 becomes $w/en. Subsequently, the rule adds to P the path

stream("photons")/photons/photon/en

which results from both applications of the path function to Path3 and to the condition χ in the where
clause. Further, the rule adds to A the aggregate annotation

(γ, avg, stream("photons")/photons/photon/en)

as well as the selection annotation

(σ, {avg(stream("photons")/photons/photon/en) >= 1.3},
{avg(stream("photons")/photons/photon/en)})

induced by the condition χ in the where clause of the query. Again, O remains unchanged. Since Path3

does not contain a stream or doc function call, id(Path3) and dtd(Path3) both return ⊥.
Figure 4(a) on page 7 shows a graphical representation of the final APT tq1 of q1. �

3.3 Translating APTs into WXQueries
The purpose of representing queries using APTs is to abstract from the restructuring details of the query
and to enable a feasible way of identifying reusable data streams for data stream sharing. Furthermore,
we show in Section 4 how APTs can be merged in order to represent multiple queries, i. e., the union
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<ROOT>
{ for $VAR in stream("STREAM")/ROOT/ITEM

return
if (PRED1 or ... or PREDn) then

<ITEM>
...
{ if (PRED1) then $VAR/PATH1 else () }
...
{ if (PREDn) then $VAR/PATHn else () }
...

</ITEM>
else () }

</ROOT>

ROOT

ITEM

PATH1 PATHn

σ

PREDn
σ

PRED1

...

Figure 5: Structure-preserving query template and corresponding APT

of the corresponding result data streams, to increase possibilities for data stream sharing. The merged
APT then reflects a subscription that can serve as a prefilter for the corresponding original queries.
Therefore, each APT represents either the abstraction of a single query or the abstraction of the union
of a set of queries. For creating the data streams represented by APTs in a distributed DSMS, we need
to install and execute according queries in the system. We distinguish between structure-preserving and
structure-mutating APTs.

3.3.1 Structure-Preserving APT

A so-called structure-preserving APT represents a query with selection and projection operators but
without more complex operators such as window construction and aggregation. We use the query template
of Figure 5 for translating such an APT into a corresponding query. We concentrate on queries referencing
data streams as input in the following. Queries on documents can be handled analogously. The template
contains template variables which are replaced by actual values when generating a query for a given APT.
In the template, the template variable ROOT stands for the root element of the input data stream (photons
in our running example), $VAR represents an arbitrary variable name, STREAM denotes the input data
stream (again photons in our running example), and ITEM references the name of the elements actually
contained in the stream (photon in the running example). Further, PRED1 to PREDn represent selection
predicates, and PATH1 to PATHn represent paths to output elements starting from $VAR . These paths can
be empty in an actual instance of the template variable, in which case the corresponding preceding slash
also disappears from the template.

The replacement of the template variables is straightforward for a given APT except for the predicate
template variables PRED1 to PREDn . These represent the predicates of the selection annotations of the
APT. The query template returns each output element in the APT under the condition indicated by
the corresponding selection annotation. If there is no selection annotation for a certain output element,
the query simply returns the element without a surrounding if condition. In this case, we also need to
remove the if condition guarding the output of the ITEM tags from the template. The query preserves the
stream order, i. e., it returns all elements in the correct order of the data stream schema. We reference
an output element in the return clause of the generated query by starting an XPath expression with $VAR
and concatenating the remaining path steps leading to the output element. The APT yields the paths
PATH1 to PATHn by taking the absolute path of the respective output element and removing the prefix
bound to $VAR . An according prefix replacement also takes place for any paths in the predicates PRED1
to PREDn . The generated query needs to enclose each returned element in the correct sequence of direct
element constructors to correctly retain the schema of the original data stream. We can easily derive
the necessary information from the paths to the returned elements in the original stream schema. These
details vary for each actual query as suggested by the corresponding dots in the template of Figure 5.

Example 3.5 The APTs of the structure-preserving queries q3 and q4 as shown in Figures 4(c) and 4(d)
are translated into the queries of Figures 7(c) and 7(d), respectively. Since the original queries each
return all output elements under the same condition as indicated by the selection annotation pull-up in
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the APT, only one if condition is used in the generated query to return all the output elements. This
illustrates how selection annotation pull-up can be used to optimize query generation and reduce query
size. In general, if all output elements of a query are returned under the same condition, the if condition
guarding the output of the ITEM element constructor and the if conditions guarding the output of the
single output elements are all identical. We can therefore leave them all out of the generated query except
for the outermost condition which then guards the entire output of the query. �

3.3.2 Structure-Mutating APT

A structure-mutating APT represents a window query or an aggregate query. We concentrate on window-
based aggregate queries since these are most common in practice and present a query template for
aggregate queries with time-based windows. Query templates for aggregate queries with count-based
windows, for queries defining data windows without aggregation, and for aggregate queries without data
windows look similar. Figure 6 shows the query template for structure-mutating APTs with aggregation
and a time-based data window. In addition to the ROOT , $VAR , STREAM , and ITEM template variables
already known from the template for structure-preserving queries, we introduce the following additional
variables. The PATH template variable stands for a relative XPath expression with predicates allowed in
each location step. We use REFPATH to denote a predicateless relative or absolute path. The variable
SIZE denotes the window size and the variable STEP denotes the step size of the data window. The
PRED variable represents a selection predicate. Further, AGGVAR1 to AGGVARn stand for arbitrary aggregate
variable names, AGGFUNC1 to AGGFUNCn each denote one of the aggregate functions min, max, sum, count,
or avg, and AGGPATH1 to AGGPATHn represent paths to the corresponding aggregated element relative to
$VAR . Moreover, AGGPRED1 to AGGPREDn are optional selection predicates for filtering aggregate values and
AGGELEM1 to AGGELEMn are generic aggregate element names. Accordingly, WINPATH1 to WINPATHm denote
paths to window elements relative to $VAR , and WINPRED1 to WINPREDm are optional selection predicates
for filtering window elements. Further, the WINELEM template variable represents a generic window root
element. The where clause, the if conditions, and the PATH , AGGPATHi , and WINPATHi variables are optional
depending on the characteristics of the corresponding APT. If PATH or any AGGPATHi or WINPATHi is empty
in an actual instance of the template variable, the corresponding preceding slash also disappears from the
template. If there is no selection annotation for a certain returned aggregate value or window element,
the query simply returns the value or element without a surrounding if condition. In such a case, we
also need to remove any if condition guarding the output of the surrounding ITEM and WINELEM tags from
the template.

The query templates for queries defining data windows without aggregation are the same as those for
window-based aggregate queries except that the let constructs for computing the aggregate values and
the corresponding if conditions in the return clause are missing. Note that sharing window operators
without aggregation during in-network query processing yields no optimization benefit in our setting
since we assume potentially overlapping sliding windows that cover the entire input stream. Window
operators therefore do not reduce the data volume of the stream. Rather, in case of overlapping windows,
the transmitted data volume is increased by repeating the overlapping parts of subsequent windows. The
query templates for aggregate queries without data windows are also the same as those for window-based
aggregate queries except that the for loop, its optional where clause, and the window-specific parts in
the return clause are missing. The query then needs to reference the input data stream via the stream
function from within the aggregate function argument. Original queries that contain a for loop without
a window definition and compute individual aggregate values for each item in the iteration are not
meaningful in practice but, for the sake of completeness, are treated internally as if they would define
a count-based window with a window size and a step size of one item each. Their APT representation
therefore also contains a corresponding window annotation. This is necessary to distinguish such queries
from semantically different queries that do not contain any for loop and compute a single aggregate value
over the entire input. Of course, such queries are only viable on finite inputs.

Again, the determination of the template variable values for a given APT is straightforward. One
important issue, however, is that selection predicates in window preselection annotations become XPath
predicates in PATH whereas selection predicates in window postselection annotations become predicates
in PRED in a where clause. Selection predicates in aggregate preselection annotations become XPath
predicates in AGGPATHi of the corresponding aggregate function call. We create the generic aggregate
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<ROOT>
{ for $VAR in stream("STREAM")/PATH|REFPATH diff SIZE step STEP|

where PRED
return
let $AGGVAR1 := AGGFUNC1($VAR/AGGPATH1)
...
let $AGGVARn := AGGFUNCn($VAR/AGGPATHn)
return
if (AGGPRED1 or ... or AGGPREDn or WINPRED1 or ... or WINPREDm) then
<ITEM>

{ if (AGGPRED1) then <AGGELEM1> { $AGGVAR1 } </AGGELEM1> else () }
...
{ if (AGGPREDn) then <AGGELEMn> { $AGGVARn } </AGGELEMn> else () }
{ if (WINPRED1 or ... or WINPREDm) then

<WINELEM>
{ if (WINPRED1) then $VAR/WINPATH1 else () }
...

{ if (WINPREDm) then $VAR/WINPATHm else () }
</WINELEM>

else () }
</ITEM>

else () }
</ROOT>

Figure 6: Structure-mutating query template with time-based data window

element name AGGELEM by concatenating the actual aggregate function name and the actual name of the
aggregated element with an underscore in between, e. g., avg_en in our example queries. This is the
element name for the aggregate value in the intermediate result data stream generated during in-network
query processing. Similarly, we create the generic window root element name WINELEM by concatenating
a fixed prefix with the name of the actual window root element, e. g., win_photon.

We reference both, aggregated elements in the arguments of aggregate function calls as well as output
elements in the return clause of the generated query by starting an XPath expression with $VAR and
concatenating the remaining path steps leading to the respective aggregated or returned element. Note
that $VAR represents a variable bound to a data window, i. e., to a sequence of elements, in the template
of Figure 6. The APT yields the paths AGGPATH1 to AGGPATHn and WINPATH1 to WINPATHm by taking the
absolute path of the respective aggregated or returned element and removing the prefix bound to $VAR ,
ignoring the window definition. Again, an according prefix replacement also takes place for any paths in
the predicates AGGPRED1 to AGGPREDn and WINPRED1 to WINPREDm .

Example 3.6 Figures 7(a) and 7(b) show the abstractions of queries q1 and q2 of Figures 3(a) and 3(b),
respectively. Note the missing if condition guarding the output of the photon element constructor in q̂2

compared to q̂1. This is due to the fact that q̂2 does not filter the returned aggregate value and therefore
unconditionally produces an output for each data window. We have also optimized q̂1 by removing the
if condition guarding the output of the avg_en element constructor. As in queries q̂3 and q̂4, this is again
possible since the query returns elements only under a single condition which is already tested by the
surrounding if condition guarding the output of the photon element constructor. �

4 Matching and Merging APTs
We next introduce a tree algebra comprising two operators for matching and merging two APTs. Match-
ing APTs is equivalent to a containment check of the represented query abstractions. We use this for
identifying shareable data streams in the network. Merging APTs enables us to compute the union of
two queries. This is necessary for data stream widening. Merging also enables data stream narrowing.
If several queries depend on the same intermediate data stream generated during in-network processing,
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<photons>
{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and
coord/cel/ra <= 138.0 and
coord/cel/dec >= -49.0 and
coord/cel/dec <= -40.0]

|det_time diff 60 step 40|
let $a := avg($w/en)
return

if ($a >= 1.3) then
<photon>
<avg_en> { $a } </avg_en>

</photon>
else () }

</photons>

(a) Abstract Query 1 (q̂1)

<photons>
{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and
coord/cel/ra <= 138.0 and
coord/cel/dec >= -49.0 and
coord/cel/dec <= -40.0]

|det_time diff 20 step 10|
let $a := avg($w/en)
return

<photon>
<avg_en> { $a } </avg_en>

</photon> }
</photons>
</photons>
</photons>

(b) Abstract Query 2 (q̂2)

<photons>
{ for $p in stream("photons")/photons/photon

return
if ($p/en >= 1.3 and

$p/coord/cel/ra >= 130.5 and
$p/coord/cel/ra <= 135.5 and
$p/coord/cel/dec >= -48.0 and
$p/coord/cel/dec <= -45.0)

then <photon>
<coord>

<cel>
{ $p/coord/cel/ra }
{ $p/coord/cel/dec }

</cel>
</coord>
{ $p/en } { $p/det_time }

</photon>
else () }

</photons>

(c) Abstract Query 3 (q̂3)

<photons>
{ for $p in stream("photons")/photons/photon
return

if ($p/coord/cel/ra >= 120.0 and
$p/coord/cel/ra <= 138.0 and
$p/coord/cel/dec >= -49.0 and
$p/coord/cel/dec <= -40.0)

then <photon>
<coord>

<cel>
{ $p/coord/cel/ra }
{ $p/coord/cel/dec }

</cel>
</coord>
{ $p/phc } { $p/en }
{ $p/det_time }

</photon>
else () }

</photons>

(d) Abstract Query 4 (q̂4)

Figure 7: Abstractions of example queries from Section 1

we potentially can narrow the intermediate data stream by replacing it with the result of merging all
remaining queries. If the deleted query required some data that is not needed by any other query, then
narrowing will remove this data and the intermediate data stream will therefore become smaller. For
large numbers of queries this is, however, expensive. Also, leaving the original intermediate stream in
the system might ease sharing for future queries. Therefore, narrowing should only be performed on
demand if network bandwidth needs to be freed. It is possible to extend the tree algebra by additional
operators. One interesting extension is support for subtraction. Subtracting APTs from each other could
for example be used for generating remainder queries in semantic caching [15].

In our application scenario, we always perform matching and merging of APTs in combination. For
efficiency reasons, we therefore do the matching and merging in one step by combining both operators
in one operation. The operation takes the stream APT and the query APT as input. The stream APT
represents the result data stream of a query already installed in the system while the query APT represents
a newly arriving query. In the matching step, the matching and merging operation examines whether
the data stream represented by the stream APT can be shared for satisfying the query represented by
the query APT. If this is not the case, the merging step appropriately merges both APTs, yielding a
new APT that represents the union of both input APTs. The resulting APT can be translated into a
WXQuery according to Section 3.3. Appropriately installing this query in the system generates a data
stream that is shareable by both, the new query and the query represented by the original stream APT.
The matching and merging of APTs needs to match and merge the path trees as well as the annotations
and the returned elements of the two input APTs.
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4.1 Matching and Merging the Tree Structures
We match and merge the tree structures of both input APTs by checking whether the path tree of the
stream APT contains each path in the path tree of the query APT. If any path is missing, the APTs do
not match and we need to merge them. The merging involves adding to the stream APT all the paths of
the query APT that are missing in the stream APT. This works just as during path tree construction as
described in Section 3.2.1.

There is a special case where we do not need to add all missing elements to the path tree of the
stream APT. This case occurs when an ancestor of the subelement to be added is already marked as an
output element under the same or a less restrictive condition as the new subelement. In this case, the
new subelement is already implicit.

4.2 Matching and Merging the Annotations
We match and merge annotations by traversing the APTs and comparing any corresponding annotations,
i. e., annotations that are associated with the same elements in both trees, along the way. We need to
handle each kind of annotation separately.

Selection annotations. For every selection annotation in the stream APT, there must be an accord-
ing selection annotation in the query APT and the selection predicate in the query APT must imply the
predicate of the stream APT. If these conditions are not met, we widen the stream APT by relaxing the
selection predicate appropriately, e. g., by forming the union of the stream and the query predicates. We
have examined predicate implication checking and relaxation in earlier work [30]. If the query APT con-
tains no selection annotation for a path tree element for which the stream APT does contain a selection
annotation, then the widening consists of removing the selection annotation in the merged APT.

Aggregate annotations. An aggregate annotation, apart from being associated with the same
element, must reference the same aggregate operator in both APTs. Further, we require the predicates
of any aggregate preselection annotations to be semantically equivalent. Otherwise, we must remove the
aggregate annotation in the merged APT. We must also remove the aggregate annotation if the aggregate
is window-based and the corresponding window annotation needs to be removed during merging (see
below).

Window annotations. The window annotations of the stream APT and the query APT only
match if they are defined over the same element in the same data stream, e. g., element photon in stream
photons in our example queries q1 and q2. Further, we require the predicates of any window preselection
annotations to be semantically equivalent. The predicates of any window postselection annotation of the
window definition in the query APT must imply the predicate of a corresponding window postselection
annotation in the stream APT. The window definitions need to fulfill the following conditions for the
window size Δ and the step size μ of the window definition in the stream APT and the window size
Δ′ and the step size μ′ of the window definition in the query APT: Δ′ mod Δ = 0, Δ mod μ = 0, and
μ′ mod μ = 0. Furthermore, the window type (count-based or element-based) must be the same and time-
based data windows must have identical reference elements. We have presented more details on sharing
window-based aggregate values in previous work [29]. If any of the above requirements is not fulfilled,
we remove the window annotation and all dependent aggregate annotations from the merged APT and
mark all elements needed by the removed annotations as output elements. We make an exception from
this rule for differing window sizes and step sizes of the two data windows. In this case, we perform data
stream widening by computing the window size and the step size of a relaxed window. This new window
is the basis for a relaxed window annotation which replaces the window annotations of the stream APT
and the query APT in the merged APT. The query represented by the resulting APT yields a result data
stream that can be used to generate the original data stream as well as to satisfy the new query. The
next section details the algorithm for computing the window size and the step size of the relaxed window
annotation.

4.3 Relaxing Data Windows
The relaxation of data windows works by computing a window size and a step size of a relaxed data
window that all dependent windows can share. This requires that, for each dependent window, we can
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Algorithm 1 RelaxWindow
Input: Window sizes Δ and Δ′, step sizes μ and μ′ of stream and query window, respectively.
Output: Window size Δ̄ and step size μ̄ of relaxed window.

1. Initialize. Compute the list LΔ,Δ′ of all common divisors of Δ and Δ′. Similarly, compute the
list Lμ,μ′ of all common divisors of μ and μ′. These are the sets of potential values for Δ̄ and μ̄,
respectively.

2. Check for compatible pairs. Iterate over LΔ,Δ′ and Lμ,μ′ in decreasing order, i. e., examine larger
values first. For each μ̄ ∈ Lμ,μ′ compare μ̄ to each Δ̄ ∈ LΔ,Δ′ until the condition Δ̄ mod μ̄ = 0 is
satisfied.

3. Return result. Return Δ̄ and μ̄.

combine multiple instances of the relaxed data window to form an instance of the dependent window.
Therefore, we do not need to compute the dependent windows or any aggregates on these windows from
scratch. Rather, we can determine them by appropriately combining the results of the relaxed window.

The window size and the step size Δ̄ and μ̄ of the relaxed window, and the window and step sizes Δ,
μ, Δ′, and μ′ of the stream and the query window, respectively, must satisfy the following conditions:
Δ̄ mod μ̄ = 0, Δ mod Δ̄ = 0, μ mod μ̄ = 0, Δ′ mod Δ̄ = 0, and μ′ mod μ̄ = 0. The task of the
window relaxation algorithm therefore is to find suitable values for Δ̄ and μ̄ under the above conditions.
Furthermore, to support the optimization goal of reducing network traffic, the resulting data stream
should consume as few bandwidth as possible. The major parameter in this respect is the step size. Note
that, for example, a window-based aggregate with a count-based data window, a window size of 10, and
a step size of 1 causes twice as much network traffic as a window with window size 5 and step size 2.
The reason is that the first window produces an aggregate value after every data stream item, while the
second window produces an aggregate value only after every second data stream item.

Algorithm 1 shows how to compute Δ̄ and μ̄ from Δ, μ, Δ′, and μ′. The algorithm takes all potential
combinations of Δ̄ and μ̄ into account and chooses the one with the largest value for μ̄ and the largest
value of Δ̄ for the chosen value of μ̄ such that the first of the above conditions, which is Δ̄ mod μ̄ = 0, is
satisfied. We choose the largest possible value for μ̄ to minimize network traffic as described above and
the largest possible value for Δ̄ for the chosen value of μ̄ to minimize computational effort. Algorithm 1
always finds optimal values for Δ̄ and μ̄. Note that it always finds valid values since, in the worst case,
Δ̄ and μ̄ will be set to 1 each.

Example 4.1 Let Δ = 45, μ = 30, Δ′ = 30, and μ′ = 20. Then, all three conditions for window
shareability as introduced in Section 4.2 are violated:

• Δ′ mod Δ = 30 mod 45 = 30 
= 0
• Δ mod μ = 45 mod 30 = 15 
= 0
• μ′ mod μ = 20 mod 30 = 20 
= 0

Consider the lists LΔ = [45, 15, 9, 5, 3, 1], LΔ′ = Lμ = [30, 15, 10, 6, 5, 3, 2, 1], and Lμ′ = [20, 10, 5, 4, 2, 1] of
all divisors of Δ, Δ′, μ, and μ′, respectively. From these lists, Algorithm 1 in the first step determines the
list of common divisors of Δ and Δ′ as LΔ,Δ′ = [15, 5, 3, 1] and that of μ and μ′ as Lμ,μ′ = [10, 5, 2, 1]. In
the second step, the algorithm tests the largest possible value for μ̄, which is 10, against all possible values
for Δ̄. This yields the invalid combinations 15 mod 10 = 5 
= 0, 5 mod 10 = 5 
= 0, 3 mod 10 = 3 
= 0, and
1 mod 10 = 1 
= 0. In practice, the algorithm immediately continues with the next value for μ̄ as soon as
the current value of Δ̄ becomes smaller than the current value of μ̄. The algorithm then takes into account
the second largest possible value for μ̄, which is 5, and starts again by comparing this value to the largest
possible value for Δ̄, which is 15, immediately arriving at the first valid combination 15 mod 5 = 0. In
the third step, the algorithm returns the final result Δ̄ = 15 and μ̄ = 5.

Figure 8 illustrates the correlations between the window sequences of, from top to bottom, the stream
window, the query window, and the relaxed window for the above example. The individual shading of the
relaxed windows indicates whether a particular relaxed window is shared for building a stream window
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Figure 8: Window relaxation example

(light gray), a query window (dark gray), or both (medium gray). Unshaded windows are not shared for
any of the two. �

4.4 Example Matchings
Consider the APTs of the four example queries in Figure 4. Assuming that the APT of q1 is the query
APT and the APT of q2 is the stream APT, applying the rules described above yields a match without
widening. If we interchange the roles of the query APT and the stream APT, i. e., match the APT of q2

with the APT of q1, the APTs do not match and need to be merged. The resulting APT is identical with
that of q2.

The situation is analogous for the APTs of q3 and q4. Again, matching the APT of q3 with the APT
of q4 yields a match without widening since the path tree of q3 contains all paths in the path tree of q4

and the selection predicate of q3 implies the selection predicate of q4. When interchanging the roles of
q3 and q4, we have no match since the path tree of q3 does not contain the phc element and the inverse
implication between the selection predicates is not true. Therefore, we need to merge the APTs, adding
the phc element and relaxing the selection predicate in the process. The resulting APT is semantically
equivalent to the APT of q4, i. e., both APTs represent the same data stream.

Matching the APT of q3 with the APT of q1 leads to the removal of the window annotation and
the aggregate annotation together with its associated selection annotation in the merged APT. The
window pre-selection annotation becomes a selection annotation associated with the photon element and
all elements at the leaves of the path tree are marked as output elements. The resulting APT therefore
looks similar to the APT of q3. The only difference is in the selection predicate of the selection annotation.
Interchanging the roles of the queries here and matching the APT of q1 with the APT of q3 leads to the
same result. In this case, the selection predicate of q3 needs to be relaxed and becomes semantically
equivalent to the window pre-selection predicate in q1.

5 Handling Join Queries
In the following, we extend our findings on APTs from the previous sections to additionally support
join queries. Join queries are queries that either reference multiple inputs or that reference the same
input multiple times in case of a self-join. Therefore, for each individual input, the abstract property
representation of the query contains an individual APT describing the referenced and returned parts of
the corresponding input source. Consequently, we call the resulting abstract property representation of
such a query an abstract property forest (APF). If inputs are combined, i. e., joined, their respective APTs
are interconnected using a new kind of annotation, called a join annotation. We begin by introducing
our notion of join and query semantics. Then, we describe how APFs are defined on the basis of APTs.
Finally, we extend the previously introduced algorithm for matching and merging APTs to support the
matching and merging of APFs. Hence, the extensions presented in this section enable the sharing,
widening, and narrowing of join query results.
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5.1 Preliminaries
Before describing the extensions for handling join queries, we first introduce our notion of join and query
semantics.

5.1.1 Join Semantics

Considering a window-based binary join on two input streams, we define the join semantics as follows.
Whenever one of the windows is updated, i. e., the window slides along by the extent defined by its step
size, all items entering the window during the update are joined with the contents of the current data
window of the other input stream. Consequently, newly arriving data items need to be buffered until the
next update is triggered. In case of a count-based data window, the update is triggered after as many
items as indicated by the window’s step size have arrived on the stream. In case of a time-based data
window, the update is triggered when the first item is encountered in the input stream whose reference
element value is larger than the projected new upper bound of the window. Due to the sort order of the
stream, we can be sure that no more items fitting into the updated window will arrive afterwards.

Whenever a window update occurs, the new items entering the updated window are joined with the
current contents of the window of the other input stream. Afterwards, the updated window slides along,
removing invalidated items from the window and adding the newly arrived ones. This process easily
generalizes to multi-way joins by appropriately joining the new items of the updated window with the
current contents of the windows of all other join inputs [18]. For simplicity, we only consider binary joins
here.

The step-based join semantics introduced above leads to non-deterministic join results. This is due to
the fact that the join result depends on the arrival sequence of data items on the joined input streams.
Figure 9(a) illustrates this issue. We assume that the data windows are generated in the sequence
indicated by the numbers next to the window intervals in the figure, i. e., the initial window of stream B
arrives before the three windows of stream A. Finally, the second window of stream B arrives. Note that
the time axes in the figure indicate the timestamp values contained in the arriving data items. These
represent application time and are independent of the actual arrival time of the data items in the data
window. We further assume that the contents of the initial windows of streams A and B in Figure 9(a)
have already been joined appropriately. We now consider joins triggered by subsequent window updates.
This leads to the three joins indicated in the figure. First, when updating the window over stream A,
the new parts of the windows numbered 3 and 4, respectively, are joined with the contents of the window
numbered 1. This corresponds to the first two joins of the data items a4 and a5 with the data items b1,
b2, and b3 in the figure. Subsequently, the new part of the window numbered 5 consisting of b4 and b5 is
joined with the complete contents of the window numbered 4 comprising a4 and a5. We can see that a
change in the arrival sequence of the windows of both streams—which depends on the arrival sequence of
the data items on both streams—can lead to a different join result. For example, if the two windows of
stream B arrive between the first and the second window of stream A, then a4 and a5 entering the data
window of stream A during its first and second update would never be joined with b1 and b2 contained
in the first window of stream B in our example. This is different from the window sequence shown in
Figure 9(a).

Despite its non-determinism, we make the case for this join semantics. In a multitude of application
domains, joining most recent data instead of computing purely timestamp-based joins is of great impor-
tance. Prominent examples comprise sensor monitoring, surveillance, traffic supervision, logistics, and
process automation control. All of these application scenarios have in common that they need to quickly
recognize and react to the newest developments and to exceptional events such as unusual sensor readings,
alarms, traffic jams, or malfunctions. Thus, in many cases it is not of primary importance to join data
items that have been generated at about the same time and to produce deterministic join results. Instead,
it is more important to join the latest, most current values that have arrived on the input streams in
order to get the most up-to-date combinations. Our step-based join semantics supports this requirement
as long as windows have reasonably small step sizes, e. g., one data item for count-based windows in
the extreme case. In the business world, SAP Executive Board member Claus Heinrich has coined the
term Real World Awareness [20], emphasizing the importance of monitoring and reacting to most recent
data for corporate success. One of the main enabling technologies in this direction is Radio Frequency
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Figure 9: Window join semantics

IDentification (RFID). In logistics, for example, reading RFID tags generates streams of events that need
to be processed. As a more concrete example, consider stock exchange tickers. When joining the tickers
of two companies to compare their relative performance, it is imperative to always combine the latest
available values. Since only the most current results are of interest, the fact that the overall join result
depends on the arrival sequence of data items is irrelevant. A similar example is to compare the relative
performance of the same company at different stock exchanges. In this case, each stock exchange provides
one of the input data streams to be joined and the join predicate checks for equality of the company id,
assuming that each ticker provides data about multiple companies. The example join queries of Figure 10
stick to our astrophysics application scenario. In this scenario, combining measurements from multiple
photon detectors of various telescopes and satellites provides for another possible application of our join
semantics. For example, it might be interesting to join photons detected in the same celestial area, i. e.,
having similar celestial coordinates, and to retrieve their energy and detection time for comparison. For
brevity and clarity of exposition, the actual example queries of Figure 10 use simplified join conditions.
However, our approach also works for more complex join queries. Another advantage of our join semantics
is that no synchronization between join input streams is necessary since we correlate the streams based on
their local window definitions which solely depend on the respective input stream. We assume that newly
arriving data items from both input streams are processed sequentially to guarantee the synchronization
of window updates and associated join computations. Furthermore, the problem of large and growing
operator states that requires the introduction of heartbeats or punctuations [44] to limit memory usage
when joining slow or bursty input streams is not an issue in our join semantics.

Note that WXQuery can also support different variants of traditional window join semantics over
data streams as found in the literature2. One of these variants, for example, specifies that each newly
arriving data item from one stream is joined with all the data items arriving on the other stream whose
timestamps are contained in a certain interval around the timestamp of the new data item. Figure 11
shows an according example WXQuery with Δ = 10. Streams photon1 and photon2 are supposed to
be photon data streams of the same schema as introduced in Figure 2 on page 3 in all our example
join queries. The above semantics has the advantage of producing deterministic join results when using
time-based data windows. Count-based data windows always lead to non-deterministic join results in all
the join semantics introduced in this section. Efficient join result sharing for join queries using another
variant of time-based window join semantics has already been studied extensively [19]. In this variant,
data items receive their timestamp on arrival at the join operator. Each data item arriving on an input
stream is joined with all data items of the other input stream that arrived previously within a certain
time interval. Consider Figure 9(b) that shows an illustrative example. The newly arriving data item
iA with timestamp value tiA in stream A is joined with all data items of stream B which have arrived
previously and whose timestamp values are greater than or equal to tiA − Δ, with Δ being the common
window size of streams A and B. Since each newly arriving data item iB with timestamp value tiB in

2See, for example, [12, 18, 19, 21, 25, 34].
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<photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 10 step 5|
for $y in stream("photon2")/photons/photon

|det_time diff 20 step 10|
where $x/en >= $y/en + 0.5
return

<result>
{ $x/en } { $x/phc }
{ $y/en } { $y/phc }

</result> }
</photons>

(a) Query 5 (q5)

<photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 10 step 5|
for $y in stream("photon2")/photons/photon

|det_time diff 20 step 10|
where $x/en >= $y/en
return

<result>
{ $x/en } { $x/det_time }
{ $y/en } { $y/det_time }

</result> }
</photons>

(b) Query 6 (q6)

<photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 30 step 5|
for $y in stream("photon2")/photons/photon

|det_time diff 15 step 10|
where $x/en >= $y/en
return

<result>
{ $x/en } { $x/det_time }
{ $y/en } { $y/det_time }

</result> }
</photons>

(c) Query 7 (q7)

<photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 15 step 10|
for $y in stream("photon2")/photons/photon

|det_time diff 30 step 15|
where $x/phc >= $y/phc
return

<result>
{ $x/en } { $x/det_time }
{ $y/en } { $y/det_time }

</result> }
</photons>

(d) Query 8 (q8)

Figure 10: Example join queries

<photons>
{ for $x in stream("photon1")/photons/photon
for $y in stream("photon2")/photons/photon
where $x/det_time - $y/det_time <= 10

or $y/det_time - $x/det_time <= 10
return
<result>

{ $x/en } { $x/phc }
{ $y/en } { $y/phc }

</result> }
</photons>

Figure 11: WXQuery with traditional join semantics

stream B is accordingly joined with all data items of stream A which have arrived previously and whose
timestamp values are greater than or equal to tiB − Δ, iA will eventually be joined with all data items
iB from stream B for which (tiA − tiB ≤ Δ) ∨ (tiB − tiA ≤ Δ) holds.

The results of [19] are applicable without any changes in our setting when the corresponding join
semantics is applied. Note that the optimizations introduced by [19] impose restrictions on the queries
taken into account for join result sharing. These restrictions include identical signatures of the join
queries, i. e., identical join predicates, and an equal window size Δ for all input streams of a query
as indicated in Figure 9(b). In contrast, our step-based semantics and the accompanying join sharing
approach introduced further below allow for different join predicates in the queries taken into account
for sharing. We also support queries with varying window and step sizes in the windows of their various
input streams.

5.1.2 Query Semantics

In SQL, joins can simply be formulated by referencing the relations to be joined in the from clause and
by including the join predicates as conditions in the where clause. The query does not imply a certain
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evaluation strategy for computing the join. Therefore, SQL-based continuous query languages such as
CQL [5] extend the query language by introducing window syntax constructs without having to change
the basic underlying SQL query semantics.

In XQuery and consequently also in WXQuery, joins are expressed by nested for loops with accom-
panying conditions reflecting the join predicates. The usual semantics of nested loops is, however, not
applicable when formulating window-based joins over possibly infinite data streams since this leads to
infinite loops that do not produce the desired results. To illustrate this issue, consider Query 5 (q5) of
Figure 10(a). Both for loops in the query reference unbounded data streams with data windows defined
on them. Under conventional XQuery semantics, the inner loop would iterate indefinitely over an infinite
number of windows on stream photon2 while the outer loop would never leave its first iteration. There-
fore, we redefine the query semantics for join queries in WXQuery as follows. Whenever a WXQuery
contains more than one for loop over a windowed input, we compute the corresponding window join as
described in Section 5.1.1. During join computation in combination with a window update, we consider
the variables bound by the for loops to iterate over the new items of the updated data window and
the current items of the other data window in a nested loops fashion. Due to this change in semantics,
we currently do not deal with queries mixing aggregates and joins. Introducing a dedicated WXQuery
syntax extension for expressing window-based joins over unbounded data streams is an issue of future
work.

5.2 The Abstract Property Forest (APF)
In the following, we define APFs and show how to translate a join query into a corresponding APF and
vice versa.

5.2.1 Definition

The definition of an APF builds on Definition 3.2 of an APT.

Definition 5.1 (Abstract Property Forest (APF)) We define an abstract property forest (APF)
fq := T of a query q with m input data streams as a list T := [tiq | 1 ≤ i ≤ m] of property trees,
one for each input source referenced in q.

Structural part The structural part of fq consists of the union of the structural parts of the contained
APTs, i. e., it is a forest consisting of the path trees of the input sources. If a query references the same
input source multiple times, e. g., for self-join purposes, then each reference has its own path tree in fq.

Content-based part In addition to the annotations of the APTs as introduced in Section 3, fq can
also contain join annotations. A join annotation a := (τ, C, R) is a selection annotation that is associated
with elements from multiple APTs. It consists of its type τ = 	
, its contents C which represent a set of
join predicates, and a set R of parents. Similar to selection annotations, the predicates in the contents C
of a join annotation are meant to be conjunctively combined. A join annotation can be associated with
elements from each participating APT. As a special kind of a selection annotation, a join annotation is
associated with the returned elements of a query and determines under which condition these elements
are returned as part of the join result. �

5.2.2 Translating WXQueries into APFs

We extend the translation rules introduced in Section 3.2.4 to support join queries referencing multiple
input streams.

Determining Join Annotations Generating the APTs for each of the multiple input sources, i. e.,
assembling the path trees, determining the annotations, and identifying the output elements, works
exactly as described in Section 3.2 for each input source. The only additional aspect is the identification
of join annotations. This is similar to determining selection annotations. If the corresponding predicate
is a join predicate, i. e., the predicate correlates elements from different input sources, a join annotation
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is generated and associated with the returned elements of the involved sources’ APTs. Determining the
input source an element belongs to is straightforward since the path to each element is expanded to the
corresponding absolute path if necessary. The absolute path contains the respective stream or document
identifier as an argument to the stream or doc function.

Example 5.1 Figure 12 shows the APFs of the example join queries q5 to q8. Note the join annotations
connecting the returned elements of both input streams in each APF. �

The inference rules for translating a WXQuery into a corresponding APF and the query template for
translating an APF back into a corresponding WXQuery can be found in the appendix.

5.3 Matching and Merging APFs
This section describes how to match and merge APFs for data stream sharing and data stream widening.
It further discusses possibilities for join result sharing.

5.3.1 Basics

As with APTs, we perform the matching and merging of APFs in one operation which takes two APFs as
input, the stream APF and the query APF. The stream APF represents the result data stream of a join
query already installed in the system while the query APF represents a newly registered join query. In
the matching step, the matching and merging operation examines whether the data stream represented
by the stream APF can be shared for satisfying the query represented by the query APF. If this is not the
case, the merging step appropriately merges both APFs, yielding either a new APF or—if the join needs
to be removed during the merge—a set of APTs representing the necessary inputs for both original APFs.
The resulting APF or APTs can accordingly be translated into one or more WXQueries. Appropriately
installing these queries in the system generates one or more data streams that are shareable by both, the
new query and the query represented by the original stream APF. The matching and merging of APFs
needs to match and merge the path trees as well as the annotations of both input APFs.

Note that it is also possible to match and merge the APF of a multiple input join query with the
APT of a single input non-join query. If the single input query should share the result of the join query,
widening will involve removing the join from the merging result. This leads to a set of independent APTs
that represent single input queries to be installed in the system. The result data streams of these queries
can then be combined later to form the original join result while a copy of one of the streams can further
be used to satisfy the new single input query. If the APF of a newly arriving join query is matched with
the APT of an already installed single input query, it might be possible to use the result stream of the
single input query as one of the inputs to the join query. To determine this, the APT of the corresponding
input stream contained in the APF of the join query needs to be matched and merged with the APT of
the query whose result shall be shared. This process can be repeated for each input stream of the join
query to find suitable streams for all inputs. An open question to be dealt with in future work is where
to place the join operator in the network to combine the inputs and to compute the actual join result.
Network-aware operator placement has already been the subject of some research work [2, 37, 41]. A
simple solution is to route all input streams to the final super-peer which is connected to the peer that
registered the new query and to compute the join there. This approach is beneficial if the join result
stream is larger than the sum of the sizes of all input streams. Another possibility is to compute the join
at any super-peer at which one of the shareable inputs has been found and to route the remaining inputs
there. The join result can subsequently be routed to the querying peer. This approach may be beneficial
if the join result size is smaller than the sum of the sizes of the join inputs. More sophisticated solutions
would make dynamic decisions, e. g., based on statistics and join result size estimations.

5.3.2 Sharing Join Results

In the following, we concentrate on the matching and merging of the APFs of two binary join queries.
Using the join and the query semantics introduced in Section 5.1, we distinguish three cases that allow
for different levels of sharing. The cases differ in the relation between the window sizes Δ and Δ′ as well
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as the step sizes μ and μ′ of each of the data windows in the properties of an already installed query
whose result data stream is considered for sharing and a newly arriving query, respectively.

Full join result sharing Full join result sharing is the simplest and most effective case. It occurs
if Δ = Δ′ and μ = μ′ for each pair of corresponding data windows in the properties of the installed
query and the properties of the new query. In this case, the join only needs to be computed once and
the join result can be shared for both queries. However, different selection predicates and projections
might be applied to the shared join result to obtain the exact result for each query. We demonstrate
this case using q5 of Figure 10(a) as the query already installed and q6 as the newly arriving query.
Figure 13(a) illustrates the evaluation of both queries. The figure uses subscripts to distinguish equally
named elements from different input streams. The upper part of the figure depicts the resulting APF
after matching and merging the APFs of the two queries. The window definitions stay the same since
both queries use the same windows. The join annotation reflects the relaxed join condition which is equal
to the join condition of q6 in this case. This is due to the fact that the join condition of q5 implies the
join condition of q6. The lower part of the figure shows the application of further selection and projection
operators to generate the final results for queries q5 and q6. Since both queries use the same window
definitions for their corresponding input streams, the basic join is computed only once as result of the
widening. The join result is then further processed using according selection and projection operators in
the postprocessing phase to obtain the final results for both queries.

Selective join result sharing Similar to full join result sharing, selective join result sharing also
allows to compute the join result once and to share it for both queries. This case occurs if Δ 
= Δ′ for at
least one pair and μ = μ′ for each pair of corresponding data windows in the properties of the installed
query and the properties of the new query. Apart from the selection and projection operators as in full
join result sharing, an additional selection of join results is necessary in the selection phase. The reason
is that during widening, the window size of each data window that has non-equal size in the properties
of the installed query and the properties of the new query is set to the maximum of the corresponding
window sizes in both properties. Figure 13(b) illustrates this aspect using queries q5 and q7 as an example.
Query q5 defines a window size of 10 for the input stream photon1 and a window size of 20 for the input
stream photon2. Accordingly, query q7 defines a window size of 30 for the input stream photon1 and a
window size of 15 for the input stream photon2. Consequently, the shareable window size for stream
photon1 is max(10, 30) = 30 and the shareable window size for stream photon2 is max(20, 15) = 20. In
the selection phase, the operator SelectJoinResult(10,20) selects only those join result items where
the joined item from the left input is within the first 10 units of the widenend data window of the left
input stream, i. e., it selects only the first third of the entire widened window which has a total size of
30 units. Furthermore, the joined item from the right input of each selected join result item is situated
within the first 20 units of the widened data window of the right input stream, i. e., the operator selects
the entire widened window which has a total size of 20 units to obtain the correct results for q5. Units
may either be time units or the number of elements, depending on whether time-based or count-based
windows are used. The situation is similar for the operator SelectJoinResult(30,15) which selects the
entire widenend window of the left input stream and only the first three quarters of the widened window
of the right input stream to obtain the correct results for q7. Again, the final results for both queries are
obtained by applying adequate selection and projection operators in the postprocessing phase.

The SelectJoinResult operator requires additional information for each join result item during the
selection phase. For time-based data windows, the timestamps of the individual input items forming a join
result item need to be preserved if the join query removes the timestamp elements from the join result.
For count-based data windows, we associate each individual input item with a monotonically increasing
integer value when the item enters the corresponding data window. Furthermore, each input item is
associated with the lower bound of the corresponding data window instance the input item belonged to
when the respective join result item was generated. Join computations are triggered by window updates in
our join semantics. Therefore, the corresponding window instance of the join input stream that triggered
the join computation corresponds to the window instance of the updated window. Window bounds are
time values in case of time-based data windows and counter values in case of count-based data windows.
Knowing the window lower bounds and the timestamp or counter values of the joined data items enables
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us to decide which join result items qualify for the result of a certain join query. Note that the counter
value for count-based windows does not need to grow indefinitely. It can be reset during any window
update process by subtracting the minimum of the counter values of all the data items contained in the
window from the current window bounds and from the counter values of all the items remaining in the
window after the update. Newly added items subsequently need to be consistently associated with further
incremental counter values.

Selective window sharing The third and final case is called selective window sharing and occurs if
μ 
= μ′ for at least one pair of corresponding data windows in the properties of the installed query and
the properties of the new query. In this case, the join result cannot be shared due to the incompatible
window definitions. Instead, we can compute relaxed window definitions that are shareable by both
queries, just as we do for aggregate queries. Figure 13(c) shows an example using queries q5 and q8.
Widening computes the new window definitions for both input streams and removes the join annotation.
In the selection phase, a window selection operator selects the appropriate windows in the appropriate
order to generate windows of the window size and the step size required by the respective query. For
example, in Figure 13(c), SelectWindows(2,1,1) selects two consecutive windows of window size 5 and
step size 5 and combines them to generate a window of window size 10 and step size 5 corresponding
to the window over the left input of q5. SelectWindows(2,2,2) analogously combines two windows of
window size 10 and step size 5 to generate the window over the right input of q5 with window size 20 and
step size 10. But it only takes into account every second window in the input when generating a particular
window. This provides for the combination of contiguous non-overlapping windows. Also, only after every
second window arriving on the input stream, the window of q5 is updated. This leads to the required step
size of 10 whereas the shared windows have a step size of 5. Similarly, for q8, SelectWindows(3,1,2)
selects three consecutive windows of window size 5 and step size 5 to form one window of window size 15
over the left input of q8. Only after every second window arriving on the input stream, the window of
q8 is updated. This leads to the required step size of 10, which is two times the step size of the shared
window. Finally, SelectWindows(3,2,3) combines three windows of window size 10 to form one window
of window size 30 over the right input of q8. Only every second input window is used to get a sequence
of contiguous non-overlapping windows for a particular window instance. To obtain the correct window
update interval of 15 for the window over the right input of q8, three windows of step size 5 must have
arrived on the shared input before updating the window of q8. The postprocessing phase then generates
the final join result for both queries by applying appropriate join and projection operators.

The joins in the postprocessing phase obey the join semantics introduced in Section 5.1.1. The
join operators can derive the updated parts of the data windows delivered by the SelectWindows
operators by means of the window definition, i. e., by examining the window bounds and the step size.
If the SelectWindows operators and the join operators are kept separate as indicated in Figure 13(c),
overlapping parts of subsequent data windows are delivered to the join operators multiple times. This can
be avoided by integrating the SelectWindows operators of the selection phase with the join operators
of the postprocessing phase and by applying appropriate optimizations.

Finally, it is worth noting that it might be more efficient in practice to execute each window join
operator individually on the ungrouped inputs instead of computing and sharing common windows among
queries via selective window sharing. Deciding which solution is the better choice depends on cost function
and network characteristics.

6 Evaluation
To assess the benefits of data stream widening, we have conducted some performance experiments using
our StreamGlobe prototype implementation. We have implemented data stream sharing and data stream
widening in StreamGlobe, together with a naive strategy called data shipping that merely serves as a
baseline. For each query, data shipping individually transmits each original input stream referenced in
the query from the peer where the corresponding original stream is registered to the peer that registered
the query. The transmission uses a shortest path in the network without sharing or forking the stream
in any way. We have implemented StreamGlobe and all optimization strategies using Java 6 and ran
our tests on a blade server. Depending on the scenario, we used 8 or 16 blades, one for each peer in the

31



 0
 5

 10
 15
 20
 25
 30
 35

SP 0
SP 1

SP 2
SP 3

SP 4
SP 5

SP 6
SP 7

A
vg

. C
PU

 lo
ad

 (
%

)

Peers

Data Shipping
Stream Sharing

Stream Widening

 0

 100

 200

 300

 400

 500

0−
1

0−
5

0−
7

1−
2

1−
6

2−
3

2−
7

3−
4

3−
6

4−
5

4−
7

5−
6A

vg
. n

et
w

or
k 

tr
af

fi
c 

(k
bp

s)

Network connections

Data Shipping
Stream Sharing

Stream Widening

Figure 14: Average CPU load and network traffic

CPU Load (%)
Accumulated Average Percentage

Data Shipping 89.0 11.13 100.0%
Stream Sharing 62.8 7.85 70.6%
Stream Widening 47.6 5.95 53.5%

Network Traffic (kbps)
Accumulated Average Percentage

Data Shipping 1999.7 166.6 100.0%
Stream Sharing 243.6 20.3 12.2%
Stream Widening 127.8 10.6 6.4%

Table 1: Accumulated and average overall CPU load and network traffic

backbone network. Each blade ran CentOS 4 and was equipped with a 2.8 GHz Intel Xeon processor and
at least 1 GB of main memory.

We conducted performance tests using various scenarios differing in the number of peers in the back-
bone network (8 or 16) and in the number of queries registered (from 4 to 100). We used three- and
four-dimensional hypercubes as network topologies. The data streams were of the form described in Sec-
tion 1. Since results for all scenarios were similar, we selected one for presentation. The chosen scenario
uses a three-dimensional hypercube network topology as shown in Figure 1. We used a single photons data
stream and registered 32 randomly generated queries. The query generator generates queries that return
a randomly chosen subset of the elements contained in the input streams. It further generates random
selection predicates. In our case, selections were performed either on the detector pixel coordinates (dx,
dy) or on the energy (en) of a photon, or on both. Selections consist of conjunctive and disjunctive com-
binations of atomic predicates. An atomic predicate in turn consists of an element variable, a comparison
operator, and a constant, e. g., en >= 1.3. The constants are chosen randomly from a predefined set of
reasonable values from our photons data set using a normal distribution. This already allows for some
amount of sharing even without data stream widening.

Figure 14 shows the results in terms of average CPU load in percent on the peers in the example
network and in terms of average network traffic in kilobits per second on the network connections between
peers. Additionally, Table 1 presents the accumulated and average CPU load and network traffic in the
overall backbone network. The accumulated overall values are computed by adding up the average CPU
load and network traffic values shown in Figure 14 for all peers and network connections. The average
overall values are computed by dividing the accumulated values by the number of peers or network
connections, respectively. The percentage in the table illustrates the relation between the three strategies
compared to the values of data shipping which serve as the baseline at 100%.

As expected, data shipping causes the highest amount of CPU load and network traffic throughout the
network since it requires to forward the entire data stream multiple times, once for each query. In contrast,
stream sharing potentially shares one result data stream for satisfying multiple subscriptions. Thus, it
reduces computational load and network traffic due to result sharing. Also, by installing subscriptions
close to the data sources in the network, early filtering and early aggregation at the stream source further
reduce resource usage within the backbone network. Only at SP0, which is the peer where the original
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photons data stream is registered, the CPU load increases using stream sharing since queries that are
unable to share any preprocessed streams in the network are installed at the stream source and their
results are routed to the querying peer on a shortest path in the network. In our scenario, 14 of the 32
queries registered were able to share preprocessed streams without widening. Using data stream widening,
this value increased to 31, i. e., every query except for the first one was able to reuse a possibly widened
result data stream of a previously registered query. This obviously leads to a further reduction of CPU
load and network traffic. In the scenario, the average CPU load in the overall network, i. e., averaged
over all 8 peers, dropped from 7.85% to 5.95%, a reduction of about 25%. The average network traffic in
the overall network, i. e., averaged over all 12 network connections, dropped from 20.3 kbps to 10.6 kbps,
a reduction of about 48%.

The results show that data stream widening serves the important purpose of making optimization
quality more independent of the actual query characteristics and the query registration sequence. Thus,
data stream widening achieves good optimization results and enables efficient resource usage for arbitrary
query loads.

Due to the increased optimization overhead, registering a query usually takes longer when using
stream widening compared to mere stream sharing without widening. Query registration times tend to
be longer for both strategies the more queries have already been registered in the system. This is due to
the fact that the optimizer has more alternatives that it can take into account. While stream widening
caused an increase in query registration times of up to double the amount of time used by stream sharing
without widening, registering a query never took longer than 45 seconds in the largest scenario with 100
queries registered. Since we deal with continuous queries which are supposed to run for several hours,
days, weeks, or even months, optimization delays of several seconds up to some minutes for a single query
are acceptable. Further, we may stop the optimization process after a certain amount of time and use
the best solution found so far if query registration times should not exceed a certain threshold.

7 Related Work
The main application domain for the techniques presented in this paper is the optimization of resource
usage in a distributed DSMS. Numerous DSMSs have been proposed in recent years. Among them
is STREAM [3], which uses the Continuous Query Language (CQL) [4] for registering subscriptions.
CQL is based on SQL and introduces an additional syntax for the specification of data windows over
streams just as WXQuery does with respect to XQuery. STREAM processes data streams by transform-
ing streams into relations and by transforming the query results back into streams again. In contrast,
StreamGlobe processes XML data streams directly using an augmented fragment of the XQuery language.
TelegraphCQ [11] adaptively processes data streams using, among other things, the Eddy [8] approach
for adaptive tuple routing. NiagaraCQ [13] optimizes query processing by sharing common computations
among continuous queries through appropriately grouping queries according to similar structures. This
is related to our more powerful approach that allows for the dynamic adaptation of streams. PIPES [24]
takes a different approach by providing a public infrastructure offering essential building blocks for de-
veloping DSMSs.

All of the above systems are centralized and tuple-based whereas StreamGlobe constitutes a dis-
tributed DSMS for managing XML data streams. Aurora [10] is another centralized data flow system
that processes tuple streams. With Aurora* and Medusa [14], a decentralized version of Aurora and
a distributed infrastructure supporting federated operation of nodes also exist. Further development
aiming at enabling new DSMS functionality such as dynamic revision of query results, dynamic query
modification, and flexible optimization led to the Borealis system [1].

Data stream sharing is closely related to multi-query optimization (MQO) [38, 39]. Traditional MQO
mainly aims at optimizing the evaluation of a query batch over a set of persistent data. However, the
streaming paradigm opens many new possibilities in our setting compared to traditional MQO, which is
mainly due to the dynamic nature of streaming data and the persistent nature of continuous queries over
data streams. For example, we can dynamically widen data streams by relaxing predicates or window
definitions to make an initially unsuitable stream shareable. Furthermore, it is possible to narrow a data
stream if some of its data is not needed any more due to the deletion of queries.

Further, the problem of query containment has a strong relation to data stream sharing. Query
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containment has already been studied for querying XML data, mainly in the context of optimizing
query rewriting in peer data management systems (PDMSs) [43]. This also includes dealing with nested
queries [16]. A main application area of query containment is semantic caching [15]. However, as with
MQO, the main difference to our work lies in the fact that, instead of dealing with persistent data and
volatile queries, we are dealing with persistent queries and volatile data. Therefore, in our setting, the
cached data corresponds to the—albeit volatile—data flowing through the network.

Another related subject are XML views. Among other things, efficiently supporting queries over XML
views of relational data for increased flexibility and interoperability is a major issue in this context. The
IBM XML Query Graph Model (XQGM) [40] is a graph-based internal query representation for XQueries
over XML views of relational data used in the XPERANTO middleware system. An incoming XQuery
is directly translated into an XQGM by the query parser and the internal query representation is used
to employ query rewriting optimizations and to compose the query with the views it references. The
XQGM is subsequently processed and decomposed into two parts. One part captures the memory and
data intensive processing and is pushed down to the relational engine while the other part constitutes a
tagger graph structure used to construct the XML query result. This approach is clearly related to ours
since we also use an abstract internal query representation for optimizing (W)XQuery processing. The
main differences are that StreamGlobe does not use a relational backend but directly processes XML data
and that we deal with data stream processing in a distributed environment. While the XQGM approach
mainly aims at exploiting the facilities of proven relational database backends for efficiently processing
XQueries over a flexible and interoperable XML view interface, StreamGlobe targets efficient resource
usage in a distributed DSMS by means of sharing common work and data among multiple long-running
continuous queries.

The importance of sharing work and resources to achieve efficient and scalable query processing has
been observed multiple times in the literature, especially in the context of data streams. One approach
in this direction is to enable shared computation for multiple related aggregations over data streams
that differ only in the choice of grouping attributes [50]. Precise sharing of common work while avoiding
unnecessary work is the focus of TULIP [27], which uses the concept of tuple lineage known, e. g., from
Eddies[8], to keep track of predicate evaluation results. Resource sharing for continuous sliding window
aggregates is an aspect that has sparked special interest. Various algorithms for solving this issue have
been proposed [6]. A possible approach for enabling sharing for overlapping sliding windows is to divide
the windows into disjoint panes [32]. These can be used to compute window aggregates containing
the respective panes. Therefore, work on the overlapping parts of the windows is done only once. An
improvement over panes allows sharing among queries involving different window definitions and selection
predicates at the same time using so-called shards [28]. Further work shows how to enable multi-query
optimization for sliding window aggregates by means of schedule synchronization [17] or focuses on general
semantics and evaluation techniques for window aggregates over data streams [33].

Joins over data streams are widely covered in the literature. As in our work, most approaches use
windows to limit the memory requirements of stream-based joins. Many of these solutions use join
semantics similar to the traditional window join semantics described in Section 5.1.1. Some approaches,
e. g. CACQ [34], also use a basic approach for sharing join results among multiple queries with different
window definitions. This involves computing the join of the contents of the largest windows and then
filtering the result multiple times with different filter conditions to obtain the exact results for all queries.
However, this might impose considerable delay on queries using relatively small windows since these
queries have to wait for their results until the join of the larger windows completes. Alternative algorithms
for shared window join scheduling [19] alleviate this problem. The literature furthermore provides efficient
algorithms for processing sliding window multi-joins in continuous queries over data streams [18]. A new
paradigm of multi-query optimization for window queries over data streams suggests the slicing of window
states and introduces a new pipelining method to reduce the number of total joins [48].

8 Conclusion
In this paper, we have introduced an abstract property tree (APT) for representing, matching, and merg-
ing queries and data in a distributed DSMS. The presented approach enables data stream sharing as well
as data stream widening and data stream narrowing. We have established formal rules for the transla-
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tion of a query formulated in our XQuery-based subscription language WXQuery into a corresponding
APT. Query templates provide for the inverse translation. Further, we have extended our approach to
support queries with multiple inputs, e. g., join queries, by introducing abstract property forests (APFs).
The results of performance experiments conducted using the prototype implementation of our distributed
DSMS StreamGlobe demonstrate the effectiveness of data stream sharing in combination with data stream
widening at a reasonable optimization cost.

An interesting topic for future work is the investigation of the cost-efficient placement of join operators
in the StreamGlobe network. Techniques from distributed databases may be useful in this direction.
Furthermore, the problem of dynamic plan migration, i. e., of replacing a query evaluation plan with its
widened or narrowed pendant in the network without losing data, is of great importance. Examining
previously proposed solutions to this problem [51, 26, 49] with regard to their applicability in our setting
can give directions on how to solve this issue. Additional difficulties for dynamic plan migration in the
context of data stream widening in StreamGlobe arise from the fact that other queries may depend on an
existing plan. These dependencies must be preserved during plan migration. A further interesting aspect
is the extension of the WXQuery subscription language, e. g., by introducing a general let expression
similar to that of standard XQuery. Finally, the tree algebra introduced in this chapter can be extended,
e. g., to support tree subtraction. Among other things, tree subtraction would be a useful approach for
computing remainder queries in semantic caching.
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A Inference Rules for Translating a WXQuery into an APF
This section extends the formal rules for translating a WXQuery into a corresponding APT introduced
in Section 3.2.4 to additionally support join queries and their translation into APFs.

The construction of the APTs of each individual input stream works as described in Section 3.2.4.
For queries with multiple input data streams, instead of generating a single APT, we generate a list
of APTs containing one APT per input data stream. The length of the list can be derived from the
query in advance. For each input source i, we also determine the input stream identifier or document
name idi and the corresponding DTD di in advance during a preprocessing phase by scanning the query
for any stream or doc function calls which contain an input source identifier as parameter. We use the
input source identifier to retrieve the corresponding DTD from a metadata repository. Therefore, idi

and di are already present for each input source i and the following rules simply forward them. This
is important since we need the corresponding input source identifier during APF generation to add
paths, annotations, and output elements to the correct APTs. In this context, we also slightly redefine
the semantics of the path, path, and cond functions. These now only return those paths or conditions
referring to the corresponding input source as indicated by a superscript. For example, if Path1 represents
a path belonging to APT ti, then path

i
(Path1) returns this path and P i ∪ {path

i
(Path1)} adds it to P i.

At the same time, path
j
(Path1) does not return any path and therefore P j ∪{path

j
(Path1)} does not add

any path to P j for all 1 ≤ j ≤ m, j 
= i. Finally, we define the condi function to only return conditions
that exclusively reference elements from input source i, i. e., simple selection conditions. Further, we
additionally introduce a variant condi that only returns conditions that reference additional input sources
besides i, i. e., join conditions involving input source i.

We again use the inference rule notation of the XQuery formal semantics specification [47]. The
judgment

Env � α ⇒ [(P 1, A1, O1, id1, d1), . . . , (Pm, Am, Om, idm, dm)]

holds if and only if, under the environment Env , the expression α induces the construction of the APTs
(P 1, A1, O1, id1, d1) to (Pm, Am, Om, idm, dm) as described in Section 3.2.4. Inference rules are again of
the form

premise1 . . . premisen

conclusion

where all premises and the conclusion are judgments of the above form. Additionally, premises may
again constitute expressions of the form Env ′ = Env + ($var ⇒ Path) that extend the environment Env
yielding the environment Env ′ by adding the binding of the variable $var to the path represented by
Path. The inference rule expresses that, if all premises hold, then the conclusion holds as well.

We now give the extended inference rules for each WXQuery expression of Definition 2.1.

Empty direct element constructor An empty direct element constructor induces a list of empty
APTs.

Env � <t/> ⇒ [(∅1, ∅1, ∅1, id1, d1), . . . , (∅m, ∅m, ∅m, idm, dm)]
(11)

Direct element constructor For each input source, the rule generates the corresponding APT just
as for the single APT in the original rule of Section 3.2.4.

Env � α1 ⇒ [(P 1
1 , A1

1, O
1
1 , id

1, d1), . . . , (Pm
1 , Am

1 , Om
1 , idm, dm)]

. . .

Env � αn ⇒ [(P 1
n , A1

n, O1
n, id1, d1), . . . , (Pm

n , Am
n , Om

n , idm, dm)]
Env � <t>α1 . . . αn</t>

⇒ [(
⋃n

i=1 P 1
i ,

⋃n
i=1 A1

i ,
⋃n

i=1 O1
i , id1, d1),

. . . ,

(
⋃n

i=1 Pm
i ,

⋃n
i=1 Am

i ,
⋃n

i=1 Om
i , idm, dm)]

(12)
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Note that, as described in Section 3.2.4, we have again rephrased the WXQuery expression for direct
element constructors in the inference rule compared to the WXQuery definition to better support the
inference rule notation.

FLWR expression We again split the inference rule for FLWR expressions into four separate rules as
in Section 3.2.4. We use the same shortcuts and functions as in the introduction of the original rules.
Additionally, as introduced above, the functions pathi and path

i
with 1 ≤ i ≤ m return only those paths

that reference the input source with identifier idi. Furthermore, the cond function only considers non-join
conditions, i. e., conditions that reference elements from only one APT. We introduce the cond function
to exclusively handle join conditions referencing elements from more than one APT. Both functions are
applied as described in Section 3.2.4 on the respective conditions.

First, we consider a for loop without any data window. The first premise in the rule again reflects
the variable binding in the for loop.

Env ′ = Env + ($x ⇒ path(Path1))

Env ′ � α ⇒ [(P 1, A1, O1, id1, d1), . . . , (Pm, Am, Om, idm, dm)]
Env � for $x in Path1 where χ return α

⇒ [(P 1 ∪ path
1
(Path1) ∪ path

1
(χ),

A1 ∪ {(σ, cond1(Path1) ∪ cond1(χ), O1),

(	
, cond
1
(Path1) ∪ cond

1
(χ), O1)}, O1, id1, d1),

. . . ,

(Pm ∪ path
m

(Path1) ∪ path
m

(χ),
Am ∪ {(σ, condm(Path1) ∪ condm(χ), Om),

(	
, cond
m

(Path1) ∪ cond
m

(χ), Om)}, Om, idm, dm)]

(13)

Note that an annotation is only added to the set Ai of annotations of a certain APT ti if Oi is not
empty, i. e., the annotation is associated with at least one returned element in Oi. As stated in Section 2,
O := O1 ∪ · · · ∪ Om must not be empty, i. e., each query must return at least one element of the input
sources or an aggregate value based on the input sources. Therefore, each annotation is associated with
at least one element in at least one of the APTs of the APF.

The next rule describes the translation of a for loop with a count-based data window. The selection
annotations are again optional, just as the corresponding conditions in the query.

Env ′ = Env + ($x ⇒ path(Path1))

Env ′ � α ⇒ [(P 1, A1, O1, id1, d1), . . . , (Pm, Am, Om, idm, dm)]
Env � for $x in Path1 |count Δ step μ| where χ return α

⇒ [(P 1 ∪ path
1
(Path1) ∪ path

1
(χ),

A1 ∪ {(ω, (count, Δ, μ), path1(Path1)), (pre-σ, cond1(Path1), ω),

(post-σ, cond1(χ), ω), (	
, cond
1
(Path1) ∪ cond

1
(χ), O1)}, O1, id1, d1),

. . . ,

(Pm ∪ path
m

(Path1) ∪ path
m

(χ),
Am ∪ {(ω, (count, Δ, μ), pathm(Path1)), (pre-σ, condm(Path1), ω),

(post-σ, condm(χ), ω), (	
, cond
m

(Path1) ∪ cond
m

(χ), Om)}, Om, idm, dm)]

(14)

Note that pathi(Path1) only returns a path for the input source with identifier idi. Therefore, the rule
generates the window annotation only once and associates it with the correct input source. The rule
does not generate the same window annotation for the other input sources since for the other sources,
the parent of the annotation specified by pathj(Path1) with j 
= i is empty.
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The inference rule describing the translation of for loops with time-based data windows again handles
an additional path Path2 which identifies the window reference element.

Env ′ = Env + ($x ⇒ path(Path1))

Env ′ � α ⇒ [(P 1, A1, O1, id1, d1), . . . , (Pm, Am, Om, idm, dm)]
Env � for $x in Path1 |Path2 diff Δ step μ| where χ return α

⇒ [(P 1 ∪ path
1
(Path1) ∪ path

1
(Path2) ∪ path

1
(χ),

A1 ∪ {(ω, (diff, path1(Path2), Δ, μ), path1(Path1)),

(pre-σ, cond1(Path1), ω), (post-σ, cond1(χ), ω),

(	
, cond
1
(Path1) ∪ cond

1
(χ), O1)}, O1, id1, d1),

. . . ,

(Pm ∪ path
m

(Path1) ∪ path
m

(Path2) ∪ path
m

(χ),
Am ∪ {(ω, (diff, pathm(Path2), Δ, μ), pathm(Path1)),

(pre-σ, condm(Path1), ω), (post-σ, condm(χ), ω),

(	
, cond
m

(Path1) ∪ cond
m

(χ), Om)}, Om, idm, dm)]

(15)

Although we do not deal with queries mixing aggregates and joins due to the semantic differences
described in Section 5.1.2, we introduce the inference rule for translating let expressions which are used to
bind the result of an aggregate function call to a variable in WXQuery. This sets the stage for supporting
mixed queries in future work.

Env ′ = Env + ($a ⇒ Φ(path(Path3)))

Env ′ � α ⇒ [(P 1, A1, O1, id1, d1), . . . , (Pm, Am, Om, idm, dm)]
Env � let $a := Φ(Path3) where χ return α

⇒ [(P 1 ∪ path
1
(Path3) ∪ path

1
(χ),

A1 ∪ {(γ, Φ, path1(Path3)), (pre-σ, cond1(Path3), γ), (σ, cond1(χ), O1),

(	
, cond
1
(Path3) ∪ cond

1
(χ), O1)}, O1, id1, d1),

. . . ,

(Pm ∪ path
m

(Path3) ∪ path
m

(χ),
Am ∪ {(γ, Φ, pathm(Path3)), (pre-σ, condm(Path3), γ), (σ, condm(χ), Om),

(	
, cond
m

(Path3) ∪ cond
m

(χ), Om)}, Om, idm, dm)]

(16)

Similar to the window annotations, the rule generates the aggregate annotation only once and associates
it with the APT ti for which pathi(Path3) actually returns a path. For the remaining input sources, the
parent of the aggregate annotation remains empty and the annotation is therefore not generated.

Conditional expression Apart from handling multiple input streams, the rule for conditional expres-
sions further differs from the corresponding rule in Section 3.2.4 in that it creates join annotations in
addition to normal selection annotations if dictated by the query to be translated.

41



Env � α1 ⇒ [(P 1
α1

, A1
α1

, O1
α1

, id1, d1), . . . , (Pm
α1

, Am
α1

, Om
α1

, idm, dm)]

Env � α2 ⇒ [(P 1
α2

, A1
α2

, O1
α2

, id1, d1), . . . , (Pm
α2

, Am
α2

, Om
α2

, idm, dm)]
Env � if χ then α1 else α2

⇒ [(P 1
α1

∪ P 1
α2

∪ path
1
(χ), A1

α1
∪ A1

α2
∪ {(σ, cond1(χ), O1

α1
),

(σ, cond1(¬χ), O1
α2

), (	
, cond
1
(χ), O1

α1
), (	
, cond

1
(¬χ), O1

α2
)},

O1
α1

∪ O1
α2

, id1, d1),
. . . ,

(Pm
α1

∪ Pm
α2

∪ path
m

(χ), Am
α1

∪ Am
α2

∪ {(σ, condm(χ), Om
α1

),

(σ, condm(¬χ), Om
α2

), (	
, cond
m

(χ), Om
α1

), (	
, cond
m

(¬χ), Om
α2

)},
Om

α1
∪ Om

α2
, idm, dm)]

(17)

Output of subtrees reachable from node $y through path π In addition to the corresponding
rule of Section 3.2.4, this inference rule handles multiple input streams and join annotations. In the rule,
Path4 again represents the pattern $y/π.

Env � Path4

⇒ [(path
1
(Path4),

{(σ, cond1(Path4), {path1(Path4)}), (	
, cond
1
(Path4), {path1(Path4)})},

{path1(Path4)}, id1, d1),
. . . ,

(path
m

(Path4),

{(σ, condm(Path4), {pathm(Path4)}), (	
, cond
m

(Path4), {pathm(Path4)})},
{pathm(Path4)}, idm, dm)]

(18)

Output of a subtree rooted at node $z This rule is similar to the corresponding rule of Section 3.2.4
except that it handles multiple input streams and propagates the identifier idi and the DTD di of each
input stream i determined in the preprocessing phase described further above.

Env � $z ⇒ [(∅, ∅, {path1($z)}, id1, d1), . . . , (∅, ∅, {pathm($z)}, idm, dm)]
(19)

Sequence For each individual input stream, the sequence rule behaves just like the original rule of
Section 3.2.4.

Env � α1 ⇒ [(P 1
1 , A1

1, O
1
1 , id

1, d1), . . . , (Pm
1 , Am

1 , Om
1 , idm, dm)]

. . .

Env � αn ⇒ [(P 1
n , A1

n, O1
n, id1, d1), . . . , (Pm

n , Am
n , Om

n , idm, dm)]
Env � (α1, . . . ,αn)

⇒ [(
⋃n

i=1 P 1
i ,

⋃n
i=1 A1

i ,
⋃n

i=1 O1
i , id1, d1),

. . . ,

(
⋃n

i=1 Pm
i ,

⋃n
i=1 Am

i ,
⋃n

i=1 Om
i , idm, dm)]

(20)

Similar to the rule for direct element constructors, we have again rephrased the WXQuery expression for
sequences in the inference rule compared to the corresponding expression in the WXQuery definition to
better support the inference rule notation.

Example A.1 As an example for the translation of a join query into a corresponding APF, consider
query q5 of Figure 10(a). For both input streams of q5, the translation builds a corresponding APT
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just as described in Section 3.2. Additionally, the inference rules introduce a new join annotation each
time they encounter a selection annotation that references elements from more than one APT. The join
annotation

(	
, {stream("photon1")/photons/photon/en
>= stream("photon2")/photons/photon/en + 0.5},

{stream("photon1")/photons/photon/en, stream("photon1")/photons/photon/phc,

stream("photon2")/photons/photon/en, stream("photon2")/photons/photon/phc})

of q5 is associated with the returned elements of all affected APTs. Figure 12(a) shows the resulting APF
fq5 of q5. �

B Translating APFs into WXQueries
Similar to APTs, we can translate an arbitrary APF back into a corresponding WXQuery. In contrast
to APTs, APFs are always structure-mutating since they represent join queries and joins are structure-
mutating operators.

Figure 15 shows the query template for translating an arbitrary APF representing a join query with
time-based data windows into a corresponding WXQuery. The template variables VARi , STREAMi , PATHi ,
REFPATHi , SIZEi , and STEPi have the same meaning as in Section 3.3. The index i indicates the input
stream the respective template variable belongs to. The JOINROOT variable represents the root element
name of the join result. For intermediate results created during in-network processing, we generate a
generic name by concatenating the root element names of the joined input streams with underscores in
between. This yields photons_photons in our example queries since photons is the root element name of
both input streams. The variable JOINPREDS represents the join predicates. We use PREDij to denote the
j -th selection predicate concerning stream i . The JOINITEM variable refers to the element name of one
join result item. We generically create this name by concatenating the names of the data stream items
of the joined streams. This yields photon_photon in our example queries since the data stream items
are named photon in both streams. Finally, PATHij is the path referencing the j -th returned element of
stream i , relative to VARi . The values of the template variables other than JOINROOT and JOINITEM are
determined from an APF in a similar way as described for the translation of APTs in Section 3.3.

The where clause, the if conditions, and the PATHi and PATHij variables are optional depending on
the characteristics of the corresponding APF. If any PATHi or PATHij is empty in an actual instance of
the template variable, the respective preceding slash also disappears from the template. If there is no
selection annotation for a certain returned element, the query simply returns the value or element without
a surrounding if condition. In such a case, we also need to remove any if conditions guarding the output
of the surrounding JOINITEM and STREAMi tags from the template. Each returned element is enclosed in
the correct sequence of surrounding elements as in the original input stream schema, starting with the
first element below the stream item, which is the photon element in our example stream. This is necessary
to uniquely identify the elements during postprocessing and is indicated by dots in the query template
of Figure 15.

Example B.1 Figure 16 shows the abstractions of queries q5 to q8 of Figure 10. �
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<JOINROOT>
{ for $VAR1 in stream("STREAM1")/PATH1|REFPATH1 diff SIZE1 step STEP1|

...
for $VARm in stream("STREAMm")/PATHm|REFPATHm diff SIZEm step STEPm|
where JOINPREDS
return
if (PRED11 or ... or PRED1n or ... or PREDm1 or PREDmk) then

<JOINITEM>
{ if (PRED11 or ... or PRED1n) then

<STREAM1>
...
{ if (PRED11) then $VAR1/PATH11 else () }
...
{ if (PRED1n) then $VAR1/PATH1n else () }
...

</STREAM1>
else () }

...
{ if (PREDm1 or ... or PREDmk) then

<STREAMm>
...
{ if (PREDm1) then $VARm/PATHm1 else () }
...
{ if (PREDmk) then $VARm/PATHmk else () }
...

</STREAMm>
else () }

</JOINITEM>
else () }

</JOINROOT>

Figure 15: Join query template
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<photons_photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 10 step 5|
for $y in stream("photon2")/photons/photon

|det_time diff 20 step 10|
where $x/en >= $y/en + 0.5
return

<photon_photon>
<photon1>
{ $x/phc } { $x/en }

</photon1>
<photon2>
{ $y/phc } { $y/en }

</photon2>
</photon_photon> }

</photons_photons>

(a) Abstract Query 5 (q̂5)

<photons_photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 10 step 5|
for $y in stream("photon2")/photons/photon

|det_time diff 20 step 10|
where $x/en >= $y/en
return

<photon_photon>
<photon1>
{ $x/en } { $x/det_time }

</photon1>
<photon2>
{ $y/en } { $y/det_time }

</photon2>
</photon_photon> }

</photons_photons>

(b) Abstract Query 6 (q̂6)

<photons_photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 30 step 5|
for $y in stream("photon2")/photons/photon

|det_time diff 15 step 10|
where $x/en >= $y/en
return

<photon_photon>
<photon1>
{ $x/en } { $x/det_time }

</photon1>
<photon2>
{ $y/en } { $y/det_time }

</photon2>
</photon_photon> }

</photons_photons>

(c) Abstract Query 7 (q̂7)

<photons_photons>
{ for $x in stream("photon1")/photons/photon

|det_time diff 15 step 10|
for $y in stream("photon2")/photons/photon

|det_time diff 30 step 15|
where $x/phc >= $y/phc
return

<photon_photon>
<photon1>
{ $x/en } { $x/det_time }

</photon1>
<photon2>
{ $y/en } { $y/det_time }

</photon2>
</photon_photon> }

</photons_photons>

(d) Abstract Query 8 (q̂8)

Figure 16: Abstractions of example join queries
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