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Abstract

Advances in server, network, and storage virtualization are
enabling the creation of resource pools of servers that permit
multiple application workloads to share each server in the pool.
This paper proposes and evaluates aspects of a capacity man-
agement process for automating the efficient use of such pools
when hosting large numbers of services. We use a trace based ap-
proach to capacity management that relies on i) a definition for
required capacity, ii) the characterization of workload demand
patterns, iii) the generation of synthetic workloads that predict
future demands based on the patterns, and iv) a workload place-
ment recommendation service. A case study with 6 months of data
representing the resource usage of 139 workloads in an enter-
prise data center demonstrates the effectiveness of the proposed
capacity management process. Our results show that when con-
solidating to 8 processor systems, we predicted future per-server
required capacity to within one processor 95% of the time. The
approach enabled a 35% reduction in processor usage as com-
pared to today’s current best practice for workload placement.

1 Introduction

In the distant past data centers were made up of small
numbers of large mainframe computers that each hosted
several application workloads with many users. Capacity
planning experts helped to ensure that sufficient aggregate
capacity was available just in time, as it was needed. With
the advent of distributed computing new application work-
loads were typically assigned to their own smaller servers.
The incremental cost of capacity from smaller servers was
much less expensive than the incremental cost of capacity
on mainframes. Capacity planners would often anticipate
an application’s workload demands two years in advance
and pre-provision a new server with sufficient capacity so
that the workload could grow into it. However, the ex-
plosive growth in both enterprise computing and Internet
computing has led to server sprawl in data centers. En-
terprise data centers are typically full of large numbers of
lightly utilized servers that incur high cost of ownership
including facilities cost, such as rent and power for com-
puting and cooling, high software licensing cost, and high
cost for human management activities.

Web services and service oriented computing further
exacerbate the issues of server sprawl. In a service oriented

environment there may be many services to manage either
as workloads that run on servers or as services that share
an operating system image. In our context, the services are
assumed to be of coarse granularity, e. g., a database ser-
vice that contributes to a customer relationship manage-
ment service that supports many end users. We consider
the resource demands of each service to correspond to an
application workload.

Many enterprises are now beginning to exploit resource
pools of servers supported by virtualization mechanisms
that enable multiple application workloads to be hosted
on each server. The primary motivation for enterprises to
adopt such technologies is increased flexibility, the abil-
ity to quickly repurpose server capacity to better meet the
needs of application workload owners, and to reduce over-
all costs of ownership. Unfortunately, the complexity of
these environments presents additional management chal-
lenges. There are many workloads, a finite number can be
hosted by each server, and each workload has capacity re-
quirements that may frequently change based on business
needs. Capacity management methods are not yet available
to manage such pools in a cost effective manner.

The goal of our work is to provide a capacity manage-
ment process for resource pools that lets capacity plan-
ners match supply and demand for resource capacity in
a just in time manner. When managing resource pools
there are numerous capacity management questions that
must be answered to ensure that resources are used effec-
tively. For example: how much capacity is needed to sup-
port the current workloads? Which workloads should be
assigned to each resource? What is the performance im-
pact of workload scheduler and/or policy settings that gov-
ern sharing? How should workloads be assigned to make
workload scheduler and/or policy settings most effective?
What should be done when a resource doesn’t have suffi-
cient capacity to meet its workloads’ needs? How many
resources will be needed over a planning horizon?

We use a trace based approach to address these capac-
ity management questions. It relies on i) a definition for
required capacity, ii) the characterization of workload de-
mand patterns, iii) the generation of synthetic workloads
that predict future demands based on the patterns, and iv) a
workload placement recommendation service. Our process
automates data gathering and analysis steps that address
these questions. As a result it enables human operators
to handle the questions more quickly and accurately with
lower labor costs.



To demonstrate the effectiveness of our proposed ca-
pacity management approach, we obtained six months of
data from an enterprise data center. The data describes the
time varying demands of 139 enterprise applications. We
demonstrate the impact of the various definitions for re-
quired capacity and demonstrate the effectiveness of the
demand prediction service. The results show that when
consolidating to 8 processor systems, we predicted per-
server required capacity to within one processor 95% of the
time when predicting per-server required capacity 5 weeks
into the future while enabling a 35% reduction in proces-
sor usage as compared to today’s current best practice for
workload placement. The remainder of the paper presents
our results in more detail.

2 Capacity Management Process

This section describes the capacity management process
we envision and its corresponding services. The process
relies on a combination of sub-processes that implement
various use cases for resource pool operators. Examples of
use cases include:

• determine resource pool capacity needed to support a
number of workloads;

• add/remove a workload to a resource pool;
• add/remove capacity to a resource pool;
• rebalance workloads across resources in a pool;
• reduce load on a server resource in a pool by recom-

mending new workload placements for some of its
workloads;

• report significant changes in workload demand behav-
iors; and,

• adjust per-workload forecasts, trends or quality of ser-
vice requirements.

To support such use cases we must start with a definition
of required capacity. Required capacity is the minimum
amount of capacity needed to satisfy resource demands for
workloads on a server resource. Section 3 gives a more for-
mal definition and motivates our particular method for ex-
pressing required capacity. Given a definition for required
capacity, we implement

• an admission control service,
• a workload placement service, and
• a workload demand prediction service.

The admission control service decides whether a re-
source pool has sufficient resources to host a new work-
load. If so it reports which server the workload should be
assigned to. We consider workloads that exploit multiple
resources as a collection of individual workloads possibly
having workload placement constraints that must be ad-
dressed by the workload placement service.

The workload placement service we employ [13] rec-
ommends where to place application workloads among
servers in the pool to reduce the number of servers used
or to balance workloads across the servers. The service

implements a trace based approach for characterizing re-
source demands and for recommending solutions. Basi-
cally, each workload is characterized using a time vary-
ing trace of demands for its key capacity attributes such as
processor usage and memory usage. The workload place-
ment service includes greedy algorithms for consolidating
workloads onto a small set of servers and for balancing
the workloads across some fixed number of servers. It
also includes a genetic algorithm based optimizing search
that aims to improve upon the greedy solutions. In each
case the algorithms simulate multiple assignment scenar-
ios. Each scenario considers the placement of zero or
more workloads on each server. The aggregate demand
of the workloads assigned to a server is characterized us-
ing a trace that is the sum of its per-workload time vary-
ing demands. The required capacity of the time varying
aggregate demands is compared with the capacity of the
resource to decide whether the workloads fit. The service
recommends the best workload placement it can find over
all servers, either for consolidation or for load leveling, that
fits. Finally, the service accepts additional constraints on
workload placements that include affinity between work-
loads, e.g., workloads must or must not be placed on the
same physical server, and affinity between workloads and
a list of one or more specific servers.

The workload demand prediction service has three pur-
poses:

• it helps to recognize whether a workload’s demands
change significantly over time;

• it supports the generation of synthetic traces that rep-
resent future demands for each workload to support
capacity planning exercises; and,

• it provides a convenient model that can be used to sup-
port forecasting exercises. The service implements
pattern discovery techniques that we describe in Sec-
tion 4.

The capacity management process relies on the key con-
cept of a capacity management plan. A capacity manage-
ment plan is a calendar based data store that keeps track of:
workload identities, forecasts, and resource access quality
of service requirements; resources that are associated with
a pool; and assignments of workloads to resources. As
a calendar based data store, the plan keeps track of such
information as a function of date and time and uses it to
support capacity planning.

Figures 1 (a) - (c) show several aspects of our capacity
management processes. “Configure resource pool size” is
used to reduce capacity fragmentation by periodically re-
packing, i.e., consolidating, workloads in a pool. “Find
placement” balances loads, i.e., divides load evenly, across
resources. It has two stages. If no resource is able to sup-
port the resulting capacity requirements then we may ei-
ther attempt a larger scale re-balancing of workloads, ad-
just workload quality of service requirements, or combine
the two approaches. “Add workload” reports whether a
placement can be found for a new workload.

To summarize, the capacity management process we en-
vision relies on the subprocesses we have described. Some
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Figure 1. Examples of Capacity Management Processes: a) Configure Resource Pool Size; b) Find Placement; c) Add Workload.

of the steps may require resource pool operator or work-
load owner intervention or may be policy driven. We ex-
pect such processes to support a greater Information Tech-
nology service delivery framework [10].

3 Required Capacity

A definition for required capacity manages the level of
overbooking in the resource pool, i. e., the extent to which
demand for capacity is deemed to be permitted to exceed
the supply of capacity. Demands may exceed supply if we
place multiple workloads on a common server and the sum
of per-workload peak demands exceeds the capacity of the
server. Workload placement algorithms use a definition for
required capacity to decide whether a set of workloads fit
on a resource. They are deemed to fit if the resource has
sufficient capacity across all attributes to support the ag-
gregate workload demands.

Our definitions rely on the concept of a unit of capac-
ity. The magnitude of a unit is somewhat arbitrary, but it
must be used in a consistent manner to express resource
demands and the capacity of resources. For processors, we
define a unit of capacity as one percentage of utilization
of the processor.1 A server with n-processors would have
n hundred units of capacity. For memory, we define each
unit of capacity as 1 MB. Similarly, we can define units of
demand for other capacity attributes. We define utilization
as demand divided by supply over some time interval.

Consider one capacity attribute. We define a workload’s
trace of demands, L, as N contiguously measured demand
values for the attribute for intervals of constant duration d.
Let tn be the time that corresponds to interval n in L and
let l(tn) be the measured demand in units of capacity. We
can write L = (l (tn))1≤n≤N . Our definitions for required
capacity rely on fixed and sliding windows of intervals.

We define a fixed window trace with c contiguous in-
tervals per window with window duration s = c · d as
LFs =

(
lFs (tn)

)
1≤n≤N/c, where lFs(tn) is the average de-

mand over the window of duration s.
We define a sliding window trace with c contiguous

1We don’t discuss the scaling of capacity requirements between
servers with different processor speeds or architectures in this paper.

intervals per window of window duration s = c ·d as LSs =(
lSs (tn)

)
1≤n≤N−c+1, where lSs(tn) is the average demand

over the windows of duration s.

3.1 Fixed Windows and Probabilities

Fixed windows provide an intuitive way to express con-
straints on required capacity. With this approach we may
state multiple simultaneous constraints for fixed windows
with different sizes. Consider Z constraints, of the form
(si,Ui,Pi), for i = 1 . . .Z, where:

• si, a fixed window with ci intervals of duration d so
that si = ci ·d,

• Ui, a limit on the percentage of utilization of capacity
for a window,

• Pi, the percentage of windows permitted to have uti-
lizations that exceed Ui.

We solve for a required capacity such that the tightest
constraint is satisfied. For example, let: s0 = 30 min-
utes, U0 = 100%, and P0 = 100%; and s1 = 5 minutes,
U1 = 100%, and P1 = 95%. The first constraint captures
the intuitive requirement that demand for capacity should
not exceed supply for too long, e.g., 30 minutes. The sec-
ond constraint limits how often demand is permitted to ex-
ceed supply at a shorter timescale, e.g., 5 minutes. This
limits the impact of overbooking on application workloads
at shorter timescales.

A deficiency of this approach is that it does not clearly
bound the impact on any demand that is not satisfied in an
interval. For example, for those 5 minute intervals where
demand exceeds supply we don’t know how much greater
demand was than supply. Furthermore, as a fixed window
approach, the result for required capacity will depend on
which interval starts the first fixed window. We now con-
sider a sliding window approach.

3.2 Simple Sliding Window

Our simple sliding window definition for required ca-
pacity defines the required capacity for a capacity attribute
as the minimum number of units of capacity needed so that
demand for capacity doesn’t exceed the supply of capacity



for more than an overload epoch s as expressed in min-
utes. If a unit of demand is not satisfied because demand
exceeds supply, i.e., an overload, then that unit of demand
propagates forward in time until there is available capacity
to satisfy the demand. For a performance critical environ-
ment s may be chosen as 0, which means all demand must
always be satisfied. For a more typical data center, where
service levels may be monitored on an hourly basis, s = 30
minutes may be a reasonable value. We report the required
capacity as the smallest capacity such that no epoch has
demand greater than supply for more than s minutes at a
time. This is a sliding window approach where the over-
load epoch is defined as the window duration s.

3.3 Per-Unit-of-Demand Sliding Window

We now consider our preferred definition for required
capacity that also uses the sliding window. With this ap-
proach, we find the smallest capacity such that no unit of
demand is propagated from one interval to the next for
more than s minutes. Additionally, we specify a resource
access probability θ that a unit of demand will be satis-
fied upon demand, and hence not propagated. This directly
relates the definition of required capacity to its impact on
workload demands.

Consider the computation of θ that takes place with the
per-unit-demand approach during workload placement ex-
ercises. Let A be the number of workload traces under con-
sideration. Each trace has W weeks of observations with T
intervals per day as measured every d minutes. Without
loss of generality, we use the notion of a week as a time pe-
riod for service level agreements. Other time periods could
also be used. Time of day captures the diurnal nature of in-
teractive enterprise workloads (e.g., those used directly by
end users); we note that some time intervals may be more
heavily loaded than others. For 5 minute measurement in-
tervals we have T = 288 intervals per day. We denote each
interval using an index 1 ≤ t ≤ T . Each day x of the seven
days of the week has an observation for each interval t.
Each observation has a measured value for each of the ca-
pacity attributes considered in the analysis.

To define θ, consider one attribute that has a capacity
limit of R units of demand. Let Dw,x,t be the sum of the
demands upon the attribute by the A workloads for week
w, day x and interval t. We define the measured value for
θ as follows.

θ =
W

min
w=1

T
min
t=1

∑7
x=1 min(Dw,x,t , R)

∑7
x=1 Dw,x,t

Thus, θ is reported as the minimum resource access
probability received any week for any of the T intervals
per day.

Furthermore, let R′ be the required capacity for an at-
tribute. The required capacity R′ is the smallest capacity
value, R′ ≤ R, to offer a probability θ′ such that θ′ ≥ θ
and those demands that are not satisfied upon request,
Dw,x,t −R′ > 0, are satisfied within the overload epoch of s
minutes.

The primary advantage of this approach over the fixed
window approach is that demand not satisfied within an in-

terval is modeled as propagated to the next interval. Com-
pared to the simple sliding window approach, the overload
conditions are defined with respect to units of demand that
are not satisfied rather than a simple number of contigu-
ous overload epochs. It has been shown that such a value
for θ can be used to decide workload manager scheduler
settings for workload managers that support two priorities
of service [6]. The approach can be used to automatically
partition a workload’s demands across the two scheduling
priorities to manage the risks of resource sharing on a per-
workload basis. The higher priority can be used as a guar-
anteed class of service and the lower priority as a class of
service that offers capacity with a statistical guarantee of
θ.

4 Workload Demand Prediction

This section describes the techniques we use for the
workload demand prediction service. Section 4.1 shows
the extraction of workload patterns and trends. These are
used to generate synthetic workload traces in Section 4.2.

4.1 Extracting Workload Patterns and
Trends

We use a three stage approach to recognize a likely pat-
tern for a workload. In the analysis phase, many hypotheti-
cal patterns are found. In the second phase, trends are com-
puted. Finally, in the third phase, the hypothetical patterns
are evaluated and a recommendation is made regarding the
most likely pattern for the workload. The recommendation
may be that the workload is periodic with a certain cycle
time or a-periodic such that no clear cycle time was found.

Given a historic workload trace L = (l (tn))1≤n≤N which
is represented by N contiguous demand values l (tn) we ex-
tract a demand pattern P = (p(tm))1≤m≤M,M≤N/2 with M
contiguous demand values p(tm) with the assumption that
the workload has a cyclic behavior. This assumption is
evaluated later in the classification phase. According to a
classical additive component model, a time series consists
of a trend component, a cyclical component, and a remain-
der, e. g., characterizing the influence of noise. The trend
is a monotonic function, modeling an overall upward or
downward change in demand.

To identify the cyclical component that describes the
periodic characteristics of the workload we determine the
yet unknown duration M of the pattern. For this, we make
a combined evaluation of the periodogram function and the
auto-correlation [4] and, thus, determine a set of hypo-
thetical pattern durations. Workloads from enterprise data
centers typically show a periodicity which is a multiple of
hours, days, weeks, and so forth. Due to unavoidable com-
putational inaccuracies and influences of irregular events
and noise, the wavelengths can diverge slightly from these
typical periods. Thus, we perform a comparison to cal-
endar specific periods and determine for every wavelength
candidate the best matching multiple of hours, days, and
weeks. After that, we select the best candidate wavelength
λ′ from the set of wavelength candidates. For more de-
tails on the calculation of wavelength candidates and the



selection of the best candidate we refer to [17]. The pat-
tern length M is defined as λ′/d intervals where d is the
duration of each interval.

The chosen value for the pattern length of M intervals
is used to calculate the pattern P = (p(tm))1≤m≤M for the
workload. First we define occurrences for the pattern and
then define the pattern’s demand values p(tm). Given M,
we divide the workload L into N/M complete occurrences
and possibly one partial occurrence. Let O be the occur-
rences of the pattern for o ≤ N/M +1. Thus, occurrence o
is a subtrace of the trace L with values lo(tm) = l (tm+o·M)
for each 1 ≤ m ≤ M. For every interval tm in the pattern we
calculate a weighted average p(tm) for the interval. The
weighted average is computed using intervals tm from the
occurrences O of the pattern. We define a weight for each
occurrence o and interval m as:

wo,m =
lo(tm)

Σolo(tm)

With these weights we compute the weighted average de-
mand for each interval tm as p(tm) = ∑o wo,m · lo(tm). We
use the weighted average to emphasize the importance of
larger values over smaller values for capacity management.

In the second phase, we analyze the trend of the work-
load. For this we calculate the overall deviation of each oc-
currence of the pattern from the original workload L. Let
co

m be the difference between the p(tm) and the demand
value for interval tm in the occurrence o. We define co as
the aggregate demand difference of occurrence o with re-
spect to the pattern P as: co = ∑1≤m≤M(p(tm)− lo(tm)).
Further, we define the trend τ as the gradient of the linear
least squares fit [7] through the values co for the occur-
rences O as ordered by time. The trend τ estimates the rate
of change of demand over time with respect to the pattern.

Finally, in the classification phase we decide which
workloads exhibit periodic behavior. The classification is
based on two measures for the quality of the pattern. The
first measure is ρ̄′ that is the average value at multiples of
the λ′ in the auto-correlation function. Larger values for ρ̄′
imply a better quality of fit. The second measure charac-
terizes the difference between occurrences O and the pat-
tern. The difference is computed as the average absolute

error ζ = ∑1≤m≤M,o |p(tm)−lo(tm)|
N between the original work-

load and the pattern P. Smaller differences suggest a better
quality of pattern. To classify the quality of patterns for a
large number of workloads, we employ a k means cluster
algorithm [9] with clustering attributes ζ and ρ̄′. The algo-
rithm partitions the patterns into three groups that we in-
terpret as having strong, medium, or weak patterns. Weak
patterns are regarded as a-periodic because no clear cycle
could be deduced for the trace.

4.2 Generating Synthetic Workload
Traces and Forecasting

We now consider a process for generating a synthetic
trace to represent a future workload demand trace L′ for
some time period in the future. Typically, we generate
traces to represent demands for a time period that is sev-
eral weeks or months into the future. Our goal for a syn-

thetic trace is to capture the highs and lows of demand and
contiguous sequences of demand. These are critical for
modeling a workload’s ability to share resource capacity
with other workloads and to model required capacity for
the workload.

To generate an occurrence o′ for L′ we rely on the his-
torical pattern occurrences O. A value lo′(tm) is chosen
randomly from the corresponding tm values from O. Given
a sufficiently large number of future occurrences O′, we
will obtain the same time varying distribution of demands
as in O. This gives us a pattern of demands that captures
the lows and highs of demand in a representative way. To
better model required capacity we must take into account
sequences of contiguous demands in the trace L. We ac-
complish this by randomly selecting blocks of b intervals
tm, tm+1, . . . ,tm+b at a time from the occurrences O. Fur-
thermore, we note that the occurrences may have a trend
τ. For the sequence of historical pattern occurrences we
normalize the demand values so that the trend is removed
with respect to the last occurrence before constructing O′.

Demands lo′(tm) in the synthetic trace are augmented to
reflect the trend τ. We assume an additive model. For each
future occurrence o′, we compute an absolute value based
on τ that must be added to each demand in occurrence o′.
The further o′ is into the future the greater the change with
respect to the historical data, assuming τ is not zero.

In our capacity management process, we repeat our
analysis steps using multiple randomly generated instances
of L′ to better characterize the range of potential behavior
for the overall system. Multiple instances better character-
ize interactions in demands among multiple workloads.

Finally, a workload pattern P provides a convenient way
to express what-if-scenarios and business forecasts that are
not observable to us from historic data. Suppose we have
a pattern P with O occurrences and we require a change
to the pattern. Then, we can express a change once with
respect to P rather than once for each of the possibly many
occurrences.

5 Case Study

To evaluate the effectiveness of our methods and pro-
cesses we obtained six months of workload trace data
for 139 workloads from a data center. The data center spe-
cializes in hosting enterprise applications such as customer
relationship management services and supply chain man-
agement services for small and medium sized businesses.
Each workload was hosted on its own server so we use
resource demand measurements for a server to character-
ize the workload’s demand trace. The measurements were
originally recorded using vmstat and sar. Each trace de-
scribes resource usage, e. g., processor demands, as mea-
sured every 5 minutes starting January 1st, 2006.

Our case study considers:

• the impact of alternative definitions for required ca-
pacity;

• general results for the data center using results from
workload demand pattern analysis method;

• a validation of the trending and synthetic workload
generation techniques; and



Workload Simple 100-p 99-p 95-p Fixed Per-unit-
Sliding window demand

Window sliding
window

w1 848 946 769 621 855 839
w2 538 580 402 296 553 533
w3 75 75 75 74.7 75 75
w4 32 51.6 40.4 9.2 36 22
w1···4 1193 1356 1036 827 1240 1164
w5 464 539 406 317 449 444
w6 180 180 180 179 180 180
w7 41 47 38.7 26.1 40 40
w8 77 120 62 51 81 70
w5···8 581 672 528 431 607 558

Table 1. Required Capacity in Units of Demand

• a walk-forward test that employs the pattern match-
ing, trending, and synthetic workload generation
methods.

5.1 Required Capacity

We now compare the following methods for computing
a required capacity as described in Section 3:

• simple sliding window definition with overload epoch
of s = 30 min;

• 100, 99 and 95-percentiles of demand (as estimates
for required capacity);

• a fixed window computation with a single con-
straint U = 100%, P = 100% and s = 30 minutes; and,

• a per-unit-demand sliding window computation with
s = 30 min.

For the per-unit-demand technique we do not constrain the
value of the resource access probability θ. We include the
percentiles of demand to explore the impact of the overload
epoch.

Table 1 gives results for a five week subset of data
for eight workloads, w1 · · ·w8, and two aggregate work-
loads w1···4 and w5···8 that include workloads w1 · · ·w4 and
w5 · · ·w8, respectively. We consider aggregate workloads
as well because we compute the required capacity for ag-
gregate workloads during workload placement recommen-
dation exercises.

The second column of the table gives the results for
the simple sliding window that propagates unsatisfied de-
mands.

The 100-percentile is the peak demand of a workload,
it is always larger than the other estimates. While the 99
and 95 percentiles are often low compared to the sliding or
fixed window approaches they provide no insight regard-
ing the duration of any resulting overload epochs. The
percentile approach typically underestimates required ca-
pacity, and as a result, it can not offer a controlled level of
overload.

The fixed window approach typically results in higher
required capacity values, i. e., more over-provisioning,
compared to sliding window definitions. This is because
the fixed window is more constraining than the sliding
window; when P = 100% all demands must be satisfied
within each fixed window. Neither the percentile nor the
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Figure 2. Workload and Required Capacity

fixed window approach characterizes the impact of over-
load epochs on units of demand. However, such a charac-
terization is helpful and necessary when deciding workload
manager scheduler settings [6].

As expected, the per-demand-unit sliding window ap-
proach typically results in a slightly lower required capac-
ity value, i. e., more efficient capacity usage, than the sim-
ple sliding window definition as it permits longer periods
of overload as long as no unit of demand remains unsatis-
fied after s = 30 minutes. Furthermore, we can observe a
value for θ that is typical for workload placements in the
data center. The resource pool operator can offer that as
part of a service level commitment for the resource pool.

For workload w4 the per-demand-unit approach results
in a significantly lower estimate for required capacity, i. e.,
more efficient user capacity. This particular workload is
very bursty, which is also shown by the relatively large
difference between its 99 and 95 percentiles of demand.
Figure 2 illustrates the computed required capacity values
for w4 with respect to the workload demand trace. It is in-
teresting that the range of results for required capacity for
the various methods is so large. The per-unit-demand slid-
ing window would clearly permit longer overload epochs
than the than the simple sliding window approach for this
bursty workload. This may be acceptable if the clearly
cyclic bursts in demand correspond to batch jobs and if
the elapsed time requirements for the batch jobs can toler-
ate the additional delay. If the resource pool has work-
load managers that can offer multiple classes of service
then a workload owner can choose a higher class of service
for those workloads with demands that should not be de-
ferred [6]. Due to these additional performance advantages
and flexibility we adopt the per-unit-demand definition for
required capacity and use it for the remainder of the case
study.

5.2 Walk-Forward Test

In this section, we exploit the workload demand predic-
tion service as part of the capacity management process.
We conduct a walk-forward test over the six months of
data to emulate how well our capacity management pro-
cess would have served the data center for the six months.

• Starting with the first week, a window with w weeks
of data is used to recommend a consolidated configu-



ration C1, i.e., each workload is assigned to a specific
server, for the system. The configuration reports ex-
pected required capacity values for each server in the
configuration.

• The next y weeks of data are then simulated with re-
spect to C1. This simulation gives the actual required
capacity for the next y weeks.

• The difference between a server’s estimated and ac-
tual required capacity gives the absolute error for the
estimate of required capacity. The negative errors re-
flect “under-estimated” capacity while the positive er-
rors correspond to “over-estimated” capacity. We use
a special CDF that reflects both types of errors for the
walk-forward test.

• The steps in the walk-forward test are repeated iter-
atively with w weeks of data but now starting with
weeks 2, 3, and so on.

• Let i be the step number in the walk-forward test. Step
i computes a new configuration Ci and a new set of
differences between estimated and actual required ca-
pacity values for each server.

We consider an ongoing process where the workloads
are repeatedly consolidated onto a number of powerful
servers over time. The servers have 8 processors. In gen-
eral, the consolidation required 13 or 15 of these servers at
a time. To evaluate the effectiveness of workload demand
prediction methods we consider several different scenarios
for generating synthetic workloads. The scenarios include:

a) use pattern analysis and trending;
b) use pattern analysis alone;
c) all workloads are associated with daily pattern; and,
d) all workloads are associated with a 30 hour pattern

(specifically chosen to be incorrect).

For our study we use w = 5 weeks of historic input for
the process and predict required capacity y = 1 week and
y = 5 weeks into the future. Figures 3 and 4 show CDFs of
errors in predictions for required capacity for the scenarios
over the entire walk-forward test. A negative error sug-
gests that a method estimates less capacity than is actually
required for a server.

Figure 3 shows the results for the one week predic-
tion. Scenarios a) and b) are pretty much indistinguishable.
Trending avoided two large but similar negative errors. A
fixed daily pattern without trending, scenario c), caused
several larger negative errors than a), i. e., values less than
-1 processor. The clearly incorrect 30 hour pattern from
scenario d) caused severe errors.

Figure 4 shows that the results for predicting required
capacity 5 weeks into the future are very similar. The only
difference is errors were a little lower for scenario b), i. e.,
without trending, than a) with trending. This is reasonable.
Our historic window of 5 weeks of data is not likely to be
sufficient for predicting trends 5 weeks into the future for
all workloads for all steps in the walk-forward test.

For both 1 week and 5 week predictions, Scenario a)
estimates per-server required capacity to within one pro-
cessor (out of eight processors) 95% of the time.
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Figure 3. Predicting Capacity for 1 Week
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Figure 4. Predicting Capacity for 5 Weeks

The current best practice for server consolidation in in-
dustry determines the peak demand of each application
workload and consolidates the applications to a small num-
ber of servers such that the sum of peak demands for ap-
plications at each server is less than the capacity of the
server. If we choose to recommend workload placements
based on peak per-application demands then we require
23 8-processor servers. By using the trace based method
described in this paper we require only 15 servers. The
approach enables a 35% reduction in processor usage as
compared to a workload placement that stacks applications
based only on their peak demands. The accuracy of pre-
dictions for required capacity suggests that such resource
savings can be achieved with little risk.

6 Related Work

We employ a trace-based approach to model the shar-
ing of resource capacity for resource pools. Many groups
have applied trace-based methods for detailed performance
evaluation of processor architectures [11]. They can also
be used to support capacity management on more coarse
data, e. g., resource usage as recorded every five minutes.

Some early work that evaluated data center efficiency
relied on traces of workload demands to predict opportuni-
ties for resource sharing in enterprise data centers [1]. The
demand prediction we consider predicts demands days,
weeks, and months into the future. We distinguish the
methods we employ from those that are typically used to
predict demands several seconds or minutes into the future.
Techniques for very short term predictions often use other
approaches such as ARMA [4] or GARCH [8, 3] models.
While these approaches may be appropriate for the very
short term their predictions quickly converge to a mean
value for the time scales of interest to us. [17] also de-
scribes methods for predicting workload demand patterns
that exploit periodograms and auto-correlation. They are
similar to the methods we propose, but do not consider
trends, or synthetic workload generation as we developed
in this paper.



Traces have been used to support what-if analysis that
consider the assignment of workloads to consolidated
servers. AOG [2] and TeamQuest [16] offer products that
employ trace-based methods to support consolidation ex-
ercises. AutoGlobe [14] proposes a self-organizing in-
frastructure where the available hardware is virtualized,
pooled, and monitored. They introduce a fuzzy logic based
controller to supervise all services running on the hard-
ware platform. If the controller recognizes an exceptional
situation it triggers actions to remedy the situation auto-
matically. In addition to that, they introduce a static opti-
mization module that uses historical demand information
to compute workload placement recommendations. They
calculate the recommendation using a greedy heuristic.

We believe the workload placement service we em-
ploy has advantages over other workload placement ser-
vices described above. It supports both consolidation and
load balancing services as needed in a comprehensive ca-
pacity management process and is supported by a genetic
algorithm that tends to improve upon greedy workload
placement solutions. Furthermore, the workload place-
ment methods go further than the other methods by ad-
dressing issues including classes of service and placement
constraints.

Finally, the required capacity approach we present im-
proves upon other approaches we have seen for resource
pools. It provides for a resource access probability that
can be used to partition each workload’s demands across
two classes of service [6]. Some researchers propose to
limit the capacity requirement of an application workload
to a percentile of its demand [15]. This does not take into
account the impact of sustained performance degradation
over time on user experience as our sliding window con-
straint does. Others look only at objectives for resources as
a whole [14] rather than making it possible for each work-
load to have an independently specified objective.

7 Conclusions and Future Work

We describe a capacity management process for re-
source pools. The process relies on services that automate
and simplify management for resource pool operators. We
focused on definitions for required capacity and on a work-
load demand prediction technique. A case study exploited
six months of data for 139 enterprise applications to evalu-
ate the effectiveness of our methods. The automated meth-
ods predicted the required capacity of servers hosting the
workloads to within one processor out of eight 95% of the
time when predicting required capacity five weeks into the
future while reducing aggregate processor requirements by
35% without significant risks. Such advance knowledge
can help resource pool operators to decide whether to or-
der additional capacity for their pools.

The workload demand prediction service relies on pat-
tern and trend recognition methods. Our case study results
show that trend prediction can be helpful as long as we
do not exaggerate how far into the future we expect trends
to continue. We believe that workload demand prediction
methods are advantageous for a capacity management pro-
cess. They recognize odd patterns which may interact in

the future, e.g., 3 day and 5 day patterns may interact every
15 days, and can help to report when a workload’s demands
appear to deviate from past behavior.

Our future work includes: developing on-line auto-
mated methods for monitoring and reporting unplanned
changes to workload characteristics; better exploiting no-
tions of confidence and risk regarding predictions for fu-
ture required capacity; and better integrating business fore-
casts for change into our approach. Further work is also
needed to characterize workload demand patterns for en-
terprise services exposed as Web services. The usage pat-
terns for these services may differ from the patterns char-
acterized in this paper.
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