
Efficient Access Control for Composite Applications

M. Wimmer1, M.-C. Albutiu1, A. Kemper1, M. Rits2, and V. Lotz2

1 Technische Universität München, 85748 Garching b. München, Germany
2 SAP Research, Font de l’Orme, 06250 Mougins, France

{wimmerma, albutiu, kemper}@in.tum.de, {maarten.rits, volkmar.lotz}@sap.com

1 Motivation

Composite applications rely on further sub-applications – also called sub-activities
in the following – to implement their functionality. There are numerous examples
including quite simple Web applications as well as large scale enterprise resource
planning (ERP) systems that interact with database backends. Also, business
processes that are realized as Web service workflows represent complex composite
applications. Thereby, sub-activities can constitute composite applications them-
selves.

In general, sub-applications are self-contained software modules that autonomously
enforce their own security policies. This autonomy of authorization can lead to sig-
nificant performance drawbacks: On the one hand, the authorizations of legitimate
users are evaluated repeatedly. On the other hand, requests of ultimately unau-
thorized users that lack authorizations at later stages of the workflow can lead to
transaction rollbacks or demand for compensating transactions. Thus, it appears
beneficial to evaluate the authorizations of users as soon as possible by shifting
access control to the workflow layer instead of retaining it at the sub-activities.
Regarding composite applications this can be a non-trivial task, as the access con-
trol configurations of several autonomous sub-applications have to be taken into
account. The key to success is a consolidated view onto the access control of com-
posite applications providing answers to the following questions: (1) What are the
least required privileges?, (2) Who is allowed to execute the composite application?,
and (3) Are there possibilities to reduce policy evaluation costs?

The first issue addresses the principle of least privilege, denoting that only those
privileges are granted which are required in the context of the sub-activities. Fol-
lowing this design paradigm reduces security vulnerabilities as it guarantees that
no business resources other than the ones needed by the composite application can
be accessed. As we showed in [WEK05, WEFK05], this restriction is of particular
importance for the design of Web services that interact with database systems.

Knowing the group of authorized users allows to detect unintended configurations
more easily. For instance, if only highly privileged users like managers are autho-
rized to execute a business process, this might be an indication that the composite
application itself has to be revised. We are addressing this issue from the single-
user / single-role perspective, meaning that a user can execute the application by



the activation of one task specific role. This complies with many business processes
which are typically representing job specific tasks. Therefore, composite applica-
tions are to be distinguished from multi-user workflows which are business processes
that are executed by several users in a team.

Optimization capabilities for composite applications – as addressed by the third
issue – can be given in two ways: On the one hand, a consolidated policy allows
the early-filtering of requests. Application invocations which will lead to aborts at
later stages in the process due to missing privileges can be detected and averted.
On the other hand, repeated and redundant authorization checks by the individual
sub-activities can be omitted, in case the authorization decision can be inferred on
the composite application’s layer.

In this contribution, we show how consolidated policies of single-user workflows can
be generated. This optimization technique has been integrated into SAP Research’s
workflow management tool suite which allows to compare traditional and optimized
policy evaluation strategies.

2 Consolidating the Access Control of Composite Applications

In order to consolidate the access control of composite applications, the workflow
structure, dataflow dependencies, and external dependencies have to be taken into
account. Details about the consolidation process have been described in [WAK06]
and [WKRL06]. The workflow structure defines the control flow, i.e., the execution
order of the sub-activities as illustrated in Figure 1(a). From an access control
point of view, sequential or parallel executions denote that all sub-activities are
invoked. We represent this characteristic through the sequence pattern. Further-
more, conditional and event based executions are possible which – from the access
control perspective – denote that only one sub-activity will be invoked. We repre-
sent this aspect through the switch template. The access control dependencies of a
composite application can then be represented by means of a tree as illustrated in
Figure 1(b). The composite application’s policy is generated through a bottom-up
analysis, combining the policies of the individual sub-activities. Users need to be
granted execution privileges by all policies that apply to the sub-activities in order
to be able to execute a sequence pattern. That is, the combined policy for a se-
quence pattern consists of the intersection of subjects and the union of all privileges
defined in the policies of the autonomous tasks.

Regarding switch patterns, two different approaches can be applied: Following
the full-authorization approach, users have to be authorized to perform all sub-
activities, irrespective which one would actually be executed. Hence, policies are
combined in the same way as for sequence pattern. In contrast to this, the partial-
authorization approach considers each execution path individually. Regarding the
switch node in Figure 1(b), users can execute the left branch in case they are au-
thorized by policy P3,4 and they can execute the right branch if they are authorized
by P2. Consequently, separate policies will be generated for the different execution
paths of a workflow.

The resulting consolidated policy includes those privileges needed to execute the



APP1

P1

APPN

PN

APP3

P3
APP4

P4

APP2

P2

(a) Control flow of a composite application (b) Workflow tree representation

Figure 1: Consolidated policies are calculated by a bottom-up analysis

composite application, respectively workflow path. Thus, in case the policies of
the sub-applications realize the principle of least privilege, this paradigm can also
be inferred for the combined policy. Furthermore, the consolidated policy consti-
tutes the basis for an optimized access control. If the full-authorization approach
is applied, authorization checks can be shifted to the workflow management sys-
tem (WFMS) and be omitted at lower execution levels. Thus, policy evaluation
costs can be saved significantly. In case of the partial-authorization approach, au-
thorizations for the individual workflow branches have to be evaluated separately,
meaning that the WFMS has to be capable of enforcing access control at workflow
branches. Both approaches help to avoid situations that demand for transaction
rollbacks and compensating transactions. This is because requests are filtered be-
fore the execution of a composite application (full-authorization) or before entering
a workflow branch (partial-authorization), so that ultimately unauthorized requests
are detected as soon as possible.

3 Demonstration

The policy consolidation approach has been integrated into SAP Research’s work-
flow management tool suite, including the three components Maestro, Nehemiah
and Gabriel. Maestro is used to model business processes, by defining a set of
sub-activities and their interdependencies, i.e., the control flow. Via drag-and-
drop, components like sub-activity nodes or control flow nodes can be inserted
and connected. Nehemiah is the workflow management engine that allows to ex-
ecute business processes which have been designed using Maestro. At runtime,
Nehemiah allows to supervise the state of the workflow by keeping track of active
sub-activities. Thus, Maestro and Nehemiah are used for workflow modeling and
activation. Individual sub-activities, on the other hand, are modeled and activated
by Gabriel. Gabriel allows to specify the roles needed to execute sub-activities.
At design time, sub-activity profiles are defined that describe which actions have
to be performed when executing a certain task. For instance, an action can be
the invocation of a Web service. When modeling a workflow with Maestro, sub-
activity nodes can be associated with the corresponding sub-activity by means of
the profile. Furthermore, subjects like roles and users can be modeled and these
subjects can be granted the privileges required to execute respective sub-activities.
The relationships between the three programs are illustrated in Figure 2.

Nehemiah supports the execution of multi-user workflows, denoting that the sub-



Nehemiah
•Workflow administration
•Workflow execution

Maestro
Workflow modeling Process description 

(exported as BPEL4WS)

Role hierarchy,

user authorizations 

(exported as XACML policies)

Sub-activity 

information

Gabriel
•Task administration / execution
•User and role administration

Figure 2: Integration into SAP Research’s workflow management tool suite

activities can be executed by teams. We complemented Nehemiah’s policy enforce-
ment strategy with the special treatment of single-user workflows and composite
applications. For this purpose, we integrated the full-authorization approach. In
the course of the demonstration, the theoretical backgrounds of our policy consoli-
dation approach are presented and illustrated by means of use cases. The consoli-
dation of Web service policies (coded in form of XACML policies) is demonstrated
and the optimized single-user execution is compared to the traditional approach
that relies on separate policy enforcements.

References

[WAK06] M. Wimmer, M.-C. Albutiu, and A. Kemper. Optimized Workflow Autho-
rization in Service Oriented Architectures. In Proceedings of ETRICS ’06,
volume 3995 of LNCS, pages 30–44, Freiburg, Germany, June 2006.

[WEFK05] M. Wimmer, P. Ehrnlechner, A. Fischer, and A. Kemper. Flexible
Autorisierung in Datenbank-basierten Web Service-Föderationen. IFE,
20(3):167–181, December 2005.

[WEK05] M. Wimmer, P. Ehrnlechner, and A. Kemper. Flexible Autorisierung in Web
Service-Föderationen. In Proceedings of BTW ’05, pages 185–204, Karlsruhe,
Germany, February 2005.

[WKRL06] M. Wimmer, A. Kemper, M. Rits, and V. Lotz. Consolidating the Access
Control of Composite Applications and Workflows. In Proceedings of DBSec
’06, volume 4127 of LNCS, pages 44–59, Sophia Antipolis, France, August
2006.


