
Dynamic Load Balancing of Virtualized
Database Services Using Hints and Load

Forecasting

Daniel Gmach Stefan Krompass Stefan Seltzsam
Martin Wimmer Alfons Kemper

Technische Universität München
D-85748 Garching/München, Germany

〈firstname.lastname〉@in.tum.de

Abstract. Future database application systems will be designed as Ser-
vice Oriented Architectures (SOAs), in contrast to today’s monolithic
architectures. The decomposition in many small services allows the us-
age of hardware clusters and a flexible service-to-server allocation but
also increases the complexity of administration. Thus, new adminis-
tration techniques like our self-organizing infrastructure are necessary.
It monitors the system, reacts automatically on exceptional situations,
e.g., overload of a server, and features self-optimizing capabilities. In
the context of distributed services it takes some time until the reac-
tion on an exceptional situation becomes effective. During this time the
server stays overloaded which leads to a poor performance of services
running on this server. In this paper, we present a novel concept to
improve self-organizing infrastructures to react proactively. For this pur-
pose we present two techniques: Short-term load forecasting for services
with periodic behavior and exploitation of hints from administrators,
e.g., resource consumptions, for irregular events. With these techniques
our system reacts proactively on imminent overload situations before
they actually appear, thus avoiding overload situations. The quality of
higher-level services, like enterprise resource planning (ERP) systems,
can be improved by running on this proactive platform. We used our
prototype implementation to perform comprehensive simulation studies,
which demonstrate the effectiveness of our approaches.

1 Introduction

Concerning the administration of Service Oriented Architectures (SOA) for data-
base application systems, three objectives can be identified: Low administration
effort, low total cost of ownership (TCO), and a high degree of service availability
and performance, i.e., ensuring that a predefined number of clients (customers
and employees) can be handled by the infrastructure. To guarantee high per-
formance, an oversized hardware environment could be used. Obviously, this
counteracts the second objective of low TCO. To balance these objectives, ser-
vices have to be assigned to the available servers intelligently and monitored
continuously. Thus, we developed our self-organizing infrastructure AutoGlobe

11:00 15:00 19:00 Time

CPU-

Load

80%

100%

t2t1

scale-out

07:00

Server A

Fig. 1. Standard Controller

11:00 15:00 19:00 Time

CPU-

Load

80%

100%

t1

scale-

out

07:00

t2
Server A

Fig. 2. Proactive Controller

[1] that is based on a feedback control loop. AutoGlobe monitors the current
state of the system and reacts on an exceptional situation by, e.g., moving an in-
stance of a service to another less loaded server during runtime. Figure 1 shows
the load curve of a typical interactive service. In the morning at 7 AM when
users start to work the load increases rapidly. The self-organizing infrastructure
detects the exceptional situation at time t1 and reacts after a verification phase
in which the service is monitored for a certain time to filter out short load peaks.
Furthermore, until the reaction – indicated by the start of an additional instance
on another server (scale-out) in Figure 1 – takes effect, some time goes by (t2).
During the period [t1, t2] the server is overloaded – we assume a server with load
above 80% as overloaded – and the services running on the server exhibit poor
performance. With the proactive control concept proposed in this paper, we im-
prove our self-organizing infrastructure to administrate the system proactively,
i.e., executing actions before load actually increases (see Figure 2). This concept
is based on two techniques, which we integrated into our self-organizing infra-
structure AutoGlobe [1]. Short-term load forecasting for services with periodic
behavior and exploitation of hints for irregular events. Empirical studies show
that most ERP-systems exhibit periodic load patterns. We use this knowledge in
our first technique, that is based on short-term load forecasting. The controller
forecasts the load of a service in the near future using extracted load patterns
and the current system state. With short-term load forecasting we achieve a well
balanced system by avoiding most exceptional situations without administrator
interactions. The second technique is based on hints specified by administra-
tors. For example, an administrator may specify the necessary number of service
instances running during the course of a working day. Based on these hints,
the controller starts additional instances before the load actually increases, thus
avoiding exceptional system states.

The remainder of the paper is organized as follows: In Section 2 the archi-
tecture of our self-organizing infrastructure AutoGlobe is presented. Section 3
describes the exploitation of hints. Then, methods for pattern extraction from
historical data and short term load forecasting follow in Section 4. Simulation
study results follow in Section 5. Finally, in Section 6 we present related work
prior to a conclusion and discussion of future research in Section 7.

Load Archive

(1) Initial Static

Allocation

Static Allocation Management

(4) Pattern

Extraction

(5) Static

Allocation

Calculation

Improved

Allocation?

Yes
(6) Adoption of the

Static Allocation

Dynamic Allocation Management

(2) Monitoring

(3) Dynamic

Optimization of

the Allocation readwrite

Fig. 3. The AutoGlobe Framework

2 Self-Managing IT-Infrastructure

AutoGlobe [1] is based on our distributed and open Web service platform Ser-
viceGlobe [2, 3]. ServiceGlobe is fully implemented in Java Version 2 and is based
on standards like XML, SOAP, UDDI, and WSDL. The key innovation of Ser-
viceGlobe is the support of mobile code, i.e., services can be distributed and
instantiated during runtime on demand at arbitrary servers participating in the
ServiceGlobe federation. Those servers are called service hosts. Of course, Ser-
viceGlobe offers the entire standard functionality of a service platform like a
transaction system and a security system [4]. The goal of the AutoGlobe project
is to add an active control component for automated service and server manage-
ment to ServiceGlobe.

Services managed by the AutoGlobe platform are virtualized by the use of
service IP addresses, i.e., every service has its own IP address assigned. This IP
address is bound to the physical network interface card (NIC) of the host running
the service. Thus, if a service is moved from one host to another, the virtual IP
address is unbound from the NIC of the old host running the service and after-
wards bound to the NIC of the target host. Consequently, services are decoupled
from servers. This service virtualization is a vital requirement for AutoGlobe.

Though not being restricted to this kind of hardware infrastructure, the ben-
efits of AutoGlobe can be experienced best on a flexible infrastructure like a
blade server environment. The advantages of blade servers compared to tradi-
tional mainframe oriented hardware are that they are relatively cheap and the
processing power can easily be scaled to the respective demand by varying the
number of blades on the fly. Blade servers normally store their data using a stor-
age area network (SAN) or a network attached storage (NAS). Thus, CPU power
and storage capacity can be scaled independently and services can be executed
on any blade because services can access their persistent data regardless of the
blade on which they are running.

2.1 Dynamic and Static Service Deployment

Figure 3 shows the basic AutoGlobe concepts, i.e., the interplay of dynamic and
static service-to-server allocation management. The dynamic allocation manage-
ment monitors services and servers (2). Exceptional situations, like failures and
overload situations are detected and remedied by a fuzzy logic based controller (3).

Static Dynamic

S
c
a
le

-O
u

t

C
a
p

a
b

le

N
o

t
S

c
a
le

-O
u

t

C
a
p

a
b

le

increase-priority

decrease-priority

scale-out

scale-in

increase-priority

decrease-priority

scale-out

scale-in

increase-priority

decrease-priority

increase-priority

decrease-priority

move

scale-up

scale-down

move

scale-up

scale-down

Fig. 4. Classification of Services and Possible Control Actions

In conjunction with service monitoring, the resource consumption of each ser-
vice is recorded and stored in a load archive. This aggregated historic load data
is afterwards evaluated and service specific load patterns are determined (4).
The pattern extraction constitutes a prerequisite for static allocation optimiza-
tion (5): Knowing the load characteristics of services, those with complementary
characteristics can be allocated on the same servers. For example, a service that
mainly operates at night can be executed on the same server as a service that is
mainly used during the day. Static allocation is used to review the current ser-
vice deployment, i.e., regularly optimized allocation designs are calculated and
compared with the actual one. The newly computed allocation design serves
as new initial allocation on which the dynamic allocation management can set
up. The initial allocation design (1) can be calculated in the same way, if load
characteristics of services are given in the form of a time-dependent cost model.

The relation between the two approaches can be characterized as follows: Dy-
namic allocation management addresses local optimizations, i.e., it induces fast
and small online deployment modifications. In contrast to this, global reorgani-
zations induced by the static allocation management component might require
(parts of) the system to be halted in the meantime. This, for example, applies
to traditional database applications that do not support flexible moves between
servers.

2.2 Service Model

In AutoGlobe services can differ in their level of flexibility. First we describe the
characterization of services and afterwards we demonstrate how administrators
can give hints to the self-organizing infrastructure.

Level of Flexibility. Services can be characterized by their level of flexibility,
denoting the operations that can be performed to remedy overload situations.
We distinguish between static and dynamic services. Instances of static services
are assigned to designated servers. In contrast to this, the deployment of dynamic
services can be modified during runtime. Furthermore, we characterize services
regarding their scale-out capability, i.e., whether more than one instance of a ser-
vice can be executed, or not. Figure 4 illustrates the possible combinations with
the respective actions that are supported. For example, Web services, which can
be replicated and instantiated on arbitrary service hosts, constitute the highest

Action Description

start starting a service
stop stopping a service
scale-in stopping a service instance
scale-out starting an additional service instance
scale-up moving a service instance to a more powerful server
scale-down moving a service instance to a less powerful server
move moving a service instance to an equivalently powerful server
increase-priority increasing a service’s priority
reduce-priority reducing a service’s priority

Table 1. Supported operations (depending on the level of flexibility)

level of flexibility. In contrast to this, traditional central database instances are
oftentimes static and not scale-out capable. An overview of the actions is given
in Table 1. These operations are initiated by the controller that manages the
dynamic allocation.

Moving an instance requires that its context, i.e., the state information of all
users currently utilizing the service instance, has to be materialized and a new
instance has to be restarted that restores this context. Thus, the necessary time
for a movement depends on the service. Obviously, such reorganization must be
transparent to clients. Thus, a sophisticated dispatcher that supports a smooth
transition onto a new instance is needed. Some of the operations depicted in
Table 1, like moves, are not supported by all available services yet. Currently,
the trend away from monolithic applications towards ERP systems that consist
of aggregated, distributed, and autonomous services can be observed. Thus, ap-
plications are supposed to achieve a higher level of flexibility in the near future.

Hints. The features of services, e.g., their level of flexibility, are described using
an XML description language. We extended this language such that administra-
tors can give hints about services to the infrastructure, e.g., resource require-
ments. Table 2 gives an overview of the possible hints. For example, the hint
instances denotes the minimum and maximum number of instances that should
be executed for a service. With the hints pinned and exclude the administrator
specifies on which servers the service may or must not be executed. AutoGlobe
supports two kinds of hints: instances and overallPIES are service-oriented
hints, all other hints describe the properties of every instance of the service.

Furthermore, the administrator can specify hints that are valid in periodic
intervals. The following example shows a temporary resource hint for a financial
accounting (FI)-service.

<service id="FI">

<temporaryHints>

<series name="example" startDate="20050201" endDate="20050301">

<time startTime="07:00:00" endTime="18:00:00"/>

<hint>

<instances hintName="between two and four">

<min>2</min>

<max>4</max>

Hint Description

instances minimum and maximum number of instances
memory minimum and maximum of main memory of the server
tempSpace minimum and maximum of temporary space of the server
performanceIndex minimum and maximum performance index of the server
exclusive exclusive allocation of the service
pinned list of possible server for the service
exclude list of excluded server for the service
overallPIES minimum and maximum for the sum of the performance indices

Table 2. Supported Hints

</instances>

<overallPIES hintName="at least 10 PIES">

<min>10</min>

</overallPIES>

</hint>

</series>

</temporaryHints>

</service>

The hint is valid between February 1st, 2005 and March 1st, 2005. During this
time the hint should be adhered every day from 7 AM to 6 PM and states that
the service should be executed on at least 2 and at most 4 servers. Furthermore,
the sum of the performance indices (the performance index of a server describes
its overall capacity) should be at least 10 PIES, whereas one PIES corresponds
to the capacity of a server with performance index one.

3 Hints about the resource consumption

In many cases the administrators know situations that claim for plenty resources
in advance and can help the system by giving hints (see Section 2.2).

Figure 5 shows the architecture of the hint controller. The hint controller
becomes active at the start of a service and every time a temporary hint becomes
effective. First, it checks for inconsistencies and consolidates all hints that are
effective at the moment. Afterwards, the hint controller enforces the consolidated
hints by activating the fuzzy controller. Figure 6 shows the embedding of the hint
controller in the dynamic controller. The hint controller chooses an appropriate
action and triggers the fuzzy controller that chooses an appropriate target server
for the action. Finally, the dynamic controller executes the action on the target
server and, thus, achieves adherence of the hints.

3.1 Detection of Inconsistencies
In a first step the hint controller checks if several hints valid at the moment
contradict each other, e.g., one hint claims at least 4 instances and another at
most 2 instances. In case of inconsistencies, the hint controller sends a warning
to the administrator and ignores inconsistent hints. Afterwards, it consolidates
the remaining hints. For Example, if we have two hints, the first one claims at
least 2 and at most 6 instances and the second one at least 4 instances, the
consolidated hint claims at least 4 and at most 6 instances for the service.

Hint Controller

Enforcement of

Service-oriented

Hints

Detection of

Inconsistencies

Enforcement of

Instance-oriented

Hints

Warning to

Administrator

Action

Action

Service Description with Hints

Fig. 5. Hint Controller

Dynamic Controller

Fuzzy Controller
Hint

Controller

Service

Description with

Hints

Rulebase

Execution of the

Action

Action Action

Host

Failure

Fig. 6. Dynamic Controller

3.2 Exploiting Hints

The exploitation of the consolidated hints proceeds in two steps. In the first
step the hint controller checks the service-oriented hints (see Section 2.2), i.e.,
number of instances and the total sum of performance indices (overallPIES). If
the considered service has less instances than required, the hint controller will
trigger the fuzzy controller with scale-out actions and specify the performance
indices of the target servers regarding the total sum of performance indices.
Thus, we increase the chance that the hint for the total sum of performance
indices is adhered. Of course, the fuzzy controller only selects target servers for
the action that fulfill all conditions. The case that too many instances of a service
are running is treated analogously. Additionally, the hint controller checks the
sum of performance indices and potentially corrects the situation by triggering
scale-ups or scale-downs, respectively.

In the second step the hint controller checks for every instance of the ser-
vice if all instance-oriented hints are satisfied. The different hints are checked
sequentially for every instance, starting with resource hints like performance in-
dex, main memory, and temporary space, followed by the exclusive flag and the
list of pinned and excluded servers. If one of these hints is violated, the hint
controller triggers actions like move, scale-up, or scale-down – depending on the
current situation and on the operations supported by the service.

4 Dynamic Load Balancing Based on Short-term Load
Forecasting

We use short-term load forecasting to improve the dynamic load balancing of our
system. Therefore, we extract patterns from services revealing periodic behavior
to gain information about their future load consumption.

4.1 Pattern Extraction

The load induced by ERP applications often shows a periodic characteristic.
Considering an LES service for example, typical load peaks can be recognized
caused by the work day of the employees. In our experiments we analyzed the
CPU and memory requirements of services. As the algorithms are not restricted

Determining Pattern Length Determining Start Points Extracting Pattern

Frequency

In
te
n
s
it
y

Time

L
o
a
d

Time

L
o
a
d

/T N

Preprocessing Load Curve

Time

L
o
a
d

Fig. 7. Pattern Extraction

to CPU and memory, we use a generic notion of load in the following. Figure 7
gives an overview of the pattern extraction.

First, historic load information of the distinct service instances is aggregated
to one equidistantly sampled time series representing the overall load induced
by the respective service. Thereby, the performance of the host machines the
instance is executed on is considered through a normalization factor.

According to the classic additive component model [5], a time series (xt)1≤t≤N

is composed of trend component, cyclical component, and remainder. The trend
models the long-term monotonic change of the average level of the time series
while the remainder represents noise effects. Service specific load patterns are
characterized by the cyclical component. Time series can be represented as an
overlay of harmonics that can efficiently be computed via Fourier Transforma-
tion. The function I (λ), with

I (λ) =N ·
[
C (λ)2 + S (λ)2

]
, with λ ∈ R and

C (λ) =
1
N

∑
1≤t≤N

(xt − x̄) · cos 2πλt, S (λ) =
1
N

∑
1≤t≤N

(xt − x̄) · sin 2πλt

defines the intensity, with which the harmonic of frequency λ is present in the
time series that is normalized by the mean value x̄. The correlation between the
pattern length T and I is that I is maximized at T/N . Thus, finding the dom-
inant frequency provides hints about the length of a pattern. Subsequently, we
determine distinctive start points for the particular pattern occurrences of length
T within the time series. Finally, the representative load pattern ps for service s
is computed as the mean of these reoccurrences. For further details see [1] where
pattern extraction is used in the context of static allocation management.

The extraction process is done under the assumption, that the series actually
reveals a periodic characteristic. Whether this holds is evaluated in a subsequent
classification phase. Therefore, the distance of the extracted templates to the
original time series and the evaluation of the periodogram are used to estimate
the quality of the extracted patterns. Depending on these estimation factors,
clusters of services are calculated – in the simplest case, services with relatively
high probability of being periodic are separated from those that are supposed
to show irregular load development. To sum up, it is noticeable that the pattern
extraction proceeds with a minimum of parameterization, which is a prerequisite
for its applicability in the context of adaptive computing.

4.2 Short-term Load Forecasting

The dynamic controller uses patterns to forecast load for the monitored services
in the near future. Figure 8 shows a typical load pattern for an ERP service,

06 Time

PIES

00 12 18 24

()sp t

Fig. 8. Extracted Load Pattern

06
Time

CPU-Load

00 12 18t t t+ ∆

, ()s cl t

80%

100%

Fig. 9. Load Forecasting

where load increases in the morning and reaches peaks in the morning, before
midday, and in the evening before users leave off work. The load is measured in
PIES and one PIES corresponds to the capacity of a server with performance
index one. Figure 9 shows the situation at time t. The solid line exhibits the
load of the monitored instance and the dotted line exhibits the forecasted load
in the near future. Due to performance the controller only forecasts the load ls
of the service s for the time t + ∆T , but for illustration purposes, we show the
complete curve. The assumption

ls,c(t)
ls(t)

=
ls,c(t + ∆t)
ls(t + ∆t)

is necessary to forecast future load. It states that the fraction of instance load
ls,c of service s on server c by the service load ls is assumed constant for the
forecasting period. This denotes that the distribution of the users or requests to
the service instances between t and t + ∆t remains constant. Under the precon-
dition that the load of the service ps(t) extracted from the pattern for the time
t is greater than zero the equation

ls,c(t + ∆t) =
1

pic
· ls,c(t) · ps(t + ∆t)

ps(t)

calculates the future load value ls,c for the time t + ∆t. If the pattern is correct
ps(t) equals ls(t) which is the monitored value. The current load of the instance
ls,c(t) multiplied by the relative change of the service load (last fraction) is the
forecasted load of the instance in PIES. To obtain the load caused by the instance
on the server c, we divide this value by the performance index pic of the server c.

In case ps(t) is zero we need information about how the dispatcher distributes
users or user requests. Then, the controller can estimate the future load of the
service instances from the forecasted load of the service.

4.3 Reacting Proactively

The dynamic controller uses the forecasted load values and reacts if an excep-
tional situation is forecasted. Therefore, the interval ∆t should be chosen care-
fully. If ∆t is very small, the effect of the reaction probably is too late. If ∆t is
very large, on the one hand forecasted values are inaccurate because the above
assumption is likely not to hold and on the other hand the controller reacts

Time

CPU-Load

t t+ ∆

80%

100%

t Server A

cl

c sl l+

Fig. 10. Scale-out on Server A

CPU-Load

t t t+ ∆

80%

100%

Server B

cl

c sl l+

Time

Fig. 11. Scale-out on Server B

very early and potentially wastes resources. A good value of ∆t is the time that
passes from the detection of an exceptional situation until the reaction becomes
effective. In case the controller forecasts an exceptional situation it has to choose
a proper reaction. Of course, for the decision making process we use forecasted
load information to select a proper action and target server. Figure 10 and 11
show two possible target servers for a scale-out action at time t. In Figure 10
the scale-out is executed on server A and in Figure 11 on server B. The bright
grey area is the load caused by other services and the dark grey area is the load
caused by the instance started through the scale-out. If the fuzzy controller only
knows the historic load values it will choose server A because it is currently less
heavily loaded than server B. When considering the future load this is a subop-
timal decision as load caused by other services on server A increases and A will
become overloaded. If the dynamic controller considers current and forecasted
values then it makes optimal decisions for the near future. In this case it will
choose server B for the scale-out.

5 Simulation Studies

We performed comprehensive simulation studies to demonstrate the effectiveness
of our proactive infrastructure. They have been conducted using a simulation
environment, that models a realistic ERP installation (see Figure 12).

5.1 Description of the Simulated Environment

The installation is divided into a database layer, an application server layer,
and a presentation layer. Furthermore, it comprises three subsystems in the
application and database layer: Classical Enterprise Resource Planning (ERP),
Business Warehouse (BW), and Customer Relationship Management (CRM),
each supplied with its own dedicated database and central instance (CI). The
central instance applications are responsible for the lock management. The other
application servers (BW, CRM, FI, HR, LES, PP) execute the application logic,
i.e., process user requests.

On this system different user requests are simulated, affecting the respective
application server, central instance and database. On each involved component
representative load is simulated. For example, an LES request produces lower
load on a database than a BW request. In order to simulate a realistic ERP

Presentation Layer

CI

FI FI FI PP PP

BW

CI

Database

CRM

CI

BW: Business Warehouse

CI: Central Instance

CRM: Customer Relationship Management

FI: Financial Accounting

HR: Human Resources

LES: Logistics Execution System

PP: Production and Planning System

DatabaseDatabase

HRLES LES LES LES

Fig. 12. Simulation System – Architecture

system, the load curves of the simulated services follow predetermined patterns
that can be observed in many organizations running ERP systems. For example,
a BW application is mainly working during the night, while the LES’s peaks
are in the morning, before lunch and in the evening. For further details on the
simulation system see [6].

We simulate an ERP environment supervised by the dynamic controller. The
application servers and central instances support scale-in and scale-out actions
and the database services are static and not scale-out capable. The dispatcher
distributes users to the instances of a service according to the performance in-
dexes of the servers running the instances. After a scale-out of an application,
users are not dynamically redistributed. They remain logged on until they com-
plete their session. We simulate a fluctuation of users, i.e., users infrequently log
themselves off and reconnect to the least-loaded application server – a kind of
behavior that can be observed in real systems, too.

We simulated 120% Users and used the following settings: To prevent the sys-
tem from reacting too late, we set the threshold value for a CPU overload to 80%,
i.e., if a server has more than 80% CPU load it is considered to be overloaded. In
this case, the controller monitors the server for 10 minutes (watchTime) in order
not to react on short load bursts. After executing an action, the affected services
are protected – no actions can be executed on this service – for 30 minutes and
the affected servers for 60 minutes.

5.2 Results of the Simulation Studies

Figures 13, 14, and 15 demonstrate the effectiveness of our proposed concepts.
They show the load curves for all servers and the average load of the whole system
indicated by a thick line. Figure 13 shows the load curves of the system managed
by the dynamic controller that we proposed in [1]. This system has problems
when the load increases rapidly at 8 AM. After some time it manages to remedy
the overload situations. To prevent the system from exceptional situations we
gave the system hints that are shown in table 3. The result of the simulation
with exploiting hints is shown in Figure 14 where we manage to avoid nearly all

6 AM - 6 PM 6 PM - 6 AM

Service Instances PIES Instances PIES

CRM > 2 > 8 = 1 > 3
LES > 6 > 20 = 1 > 3
FI > 5 > 18 = 1 > 3
PP > 3 > 12 = 1 > 3
HR > 2 > 8 = 1 > 3
BW = 1 > 3 > 4 > 8

Table 3. Given Hints

overload situations. At 6 AM the controller starts additional instances to satisfy
the temporary hints. Thus at 8 AM there are enough instances running to take
on the increasing load. In the evening the additional instances are stopped and
the resources are freed for other services.

In Figure 15 we have the same initial situation like in Figure 13 but now we
use our proposed load forecasting technique to prevent the system from over-
load situations. We monitored the simulated system for some days and extracted
patterns from the historic load data. Using these patterns our proactive infra-
structure forecasts load for 180 minutes in order to have enough time to instan-
tiate more additional instances. In the morning the controller detects that the
load will increase in three hours and starts additional instances of the services.
Furthermore, it considers forecasted load values for the choice of target servers.
Thus, the dynamic controller manages to avoid the overload situations.

5.3 Comparison

Both techniques – administrator given hints and short-term load forecasting –
provide a well-balanced system and manage to avoid nearly all predictable over-
load situations. Furthermore, they are complementing each other. Short-term
load forecasting should be used for services with cyclical behavior and hints
should be used additionally for mission critical services with irregular load con-
sumptions as they cause more administration effort. Finally, temporary hints
can be used to execute services exclusively on a server, e.g., the BW-database
should be executed exclusively on the server during night while during day other
services can run on it as well.

The conclusion of our studies is that reacting proactively improves the per-
formance of self-organizing infrastructures. Using short-term load forecasting for
periodic services supplemented with administrator given hints for irregular situa-
tions that are known in advance, we achieve to prevent the system from nearly all
overload situations. Of course, if an unpredictable exceptional situation appears,
the dynamic controller will still recognize and remedy it.

6 Related Work

Previous work in the AutoGlobe project is described in [1]. It explains the archi-
tecture, the fuzzy controller, and the concept of static and dynamic allocation
management in detail. [6] shows the results of the corresponding simulation

0 %

20 %

40 %

60 %

80 %

100 %

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00

C
P

U
 L

oa
d

Time

Fig. 13. CPU Load of all Servers

0 %

20 %

40 %

60 %

80 %

100 %

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00

C
P

U
 L

oa
d

Time

Fig. 14. CPU Load of all Servers with Exploitation of Hints

0 %

20 %

40 %

60 %

80 %

100 %

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00

C
P

U
 L

oa
d

Time

Fig. 15. CPU Load of all Servers with Load Forecasting

Blade1
Blade2
Blade3
Blade4
Blade5
Blade6
Blade7
Blade8
Blade9
Blade10
Blade11
Blade12
Blade13
Blade14
Blade15
Blade16
DBServer1
DBServer2
DBServer3
Average
Load

studies. The proactive control concept presented in this paper improves the dy-
namic allocation management of AutoGlobe to react proactively. Weikum [7]
motivates the automatic tuning concept in the database area and concludes that
it should be based on the paradigm of a feedback control loop which consists
of three phases: observation, prediction, and reaction. [8] presents IBM’s auto-
nomic query optimizer—based on a feedback control loop—that automatically
self-validates its cost model without requiring any user interaction to repair in-
correct statistics or cardinality estimates.

Since IBM coined the term of autonomic computing [9] in October 2001
several global industrial players initiated research projects in this area. An au-
tonomic computing system provides self-managing capabilities, i.e., it handles
self-configuration, self-healing, self-optimization, and self-protection.

The author of [10] pragmatically explains the concepts and terminology of
load balancing. This book shows the complexity of load balancing in computing
infrastructures. [11] presents an architecture that combines resource reservations
and application adaptations in the context of network applications. The authors
examine the interaction of reservations and adaptions in detail for the resource
network bandwidth. [12], [13], and [14] present storage systems that provide self-
organizing capabilities and support administrators during the design of storage
systems. [15] develops an architecture for multi-platform working, based on an
autonomic computing concept, where the autonomic elements communicate their
’vital signs’ to achieve self-healing capabilities. [16] is a framework for enabling
autonomic grid applications. They use a decentralized deductive engine, that pro-
vides core capabilities for supporting automatic compositions, adaptations, and
optimizations. While these projects monitor the system and react on exceptional
situations our concept forecasts exceptional situations and reacts proactively.

7 Conclusion

We presented a novel concept for self-organizing infrastructures that are based
on a feedback control loop to react proactively and thus improve the perfor-
mance of the system. Therefore, we introduced two techniques: short-term load
forecasting and exploitation of administrator given hints. Furthermore, we im-
proved our dynamic controller to regard forecasted load values for the choice of a
target server. We implemented the two techniques within the scope of our proto-
type AutoGlobe, which is based on a fuzzy controller that determines an action
and a target server to remedy the exceptional situation. Using our prototype we
demonstrated the effectiveness of our proposed concept by performing compre-
hensive simulation studies. The results of the studies confirm the applicability
of our two techniques.

We are currently investigating concepts to improve quality of service (QoS)
in self-organizing infrastructures. For this purpose administrators specify service
level agreements (SLA). Using the SLAs and the system state the controller
can calculate reservations, such that the SLA are adhered. Furthermore, the
controller monitors the QoS-Parameters and reacts on imminent SLA-violations.

References

1. Gmach, D., Seltzsam, S., Wimmer, M., Kemper, A.: AutoGlobe: Automatische Ad-
ministration von dienstbasierten Datenbankanwendungen. In: Proceedings of the
GI Conference on Database Systems for Business, Technology, and Web (BTW),
Karlsruhe, Germany (2005) 205–224

2. Keidl, M., Seltzsam, S., Kemper, A.: Reliable Web Service Execution and Deploy-
ment in Dynamic Environments. In: Proceedings of the International Workshop
on Technologies for E-Services (TES). Volume 2819 of Lecture Notes in Computer
Science (LNCS)., Berlin, Germany (2003) 104–118

3. Keidl, M., Seltzsam, S., Stocker, K., Kemper, A.: ServiceGlobe: Distributing E-
Services across the Internet (Demonstration). In: Proceedings of the International
Conference on Very Large Data Bases (VLDB), Hong Kong, China (2002) 1047–
1050

4. Seltzsam, S., Börzsönyi, S., Kemper, A.: Security for Distributed E-Service Com-
position. In: Proceedings of the International Workshop on Technologies for E-
Services (TES). Volume 2193 of Lecture Notes in Computer Science (LNCS).,
Rome, Italy (2001) 147–162

5. Schlittgen, R., Streitberg, B.: Zeitreihenanalyse. 9 edn. R. Oldenbourg Verlag
(2001)

6. AutoGlobe: Simulation studies. http://www-db.in.tum.de/research/projects/
AutoGlobe (2005)

7. Weikum, G., Mönkeberg, A., Hasse, C., Zabback, P.: Self-tuning Database Tech-
nology and Information Services: from Wishful Thinking to Viable Engineering. In:
Proceedings of the International Conference on Very Large Data Bases (VLDB),
Hong Kong, China (2002) 20–31

8. Markl, V., Lohman, G.M., Raman, V.: LEO: An Autonomic Query Optimizer for
DB2. IBM Systems Journal 42 (2003) 98–106

9. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. http://www.research.ibm.com/autonomic/manifesto/autonomic_

computing.pdf (2001)
10. Bourke, T.: Server Load Balancing. O’Reilly & Associates, Sebastopol, USA (2001)
11. Foster, I., Roy, A., Sander, V.: A Quality of Service Architecture that Combines

Resource Reservation and Application Adaptation. In: 8th International Workshop
on Quality of Service. (2000)

12. Ganger, G.R., Strunk, J.D., Klosterman, A.J.: Self-* Storage: Brick-Based Stor-
age With Automated Administration. Technical report CMU-CS-03-178, Carnegie
Mellon University, Pittsburgh, USA (2003)

13. Uttamchandani, S., Yin, L., Alvarez, G.A., Palmer, J., Agha, G.: CHAMELEON: A
Self-Evolving, Fully-Adaptive Resource Arbitrator for Storage Systems. USENIX
Annual Technical Conference (2005) 75–88

14. Alvarez, G.A., Borowsky, E., Go, S., Romer, T.H., Becker-Szendy, R., Golding,
R., Merchant, A., Spasojevic, M., Veitch, A., Wilkes, J.: Minerva: An Automated
Resource Provisioning Tool for Large-Scale Storage Systems. ACM Transactions
on Computer Systems (TOCS) 19 (2001) 483–518

15. Sterritt, R., Bantz, D.F.: Pac-men: Personal autonomic computing monitoring
environment. In: 15th International Workshop on Database and Expert Systems
Applications (DEXA 2004), IEEE Computer Society (2004) 737–741

16. Agarwal, M., Bhat, V., Liu, H., Matossan, V., Putty, V., Schmidt, C., Zhang, G.,
Zhen, L., Parashar, M., Khargharia, B., Hariri, S.: AutoMate: Enabling Autonomic
Applications on the Grid. In: Proceedings of the International Workshop on Active
Middleware Services (AMS), Seattle, WA, USA (2003) 48–59

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

