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ABSTRACT

This work aims at reducing the main-memory footprint in
high performance hybrid OLTP & OLAP databases, while
retaining high query performance and transactional through-
put. For this purpose, an innovative compressed columnar
storage format for cold data, called Data Blocks is intro-
duced. Data Blocks further incorporate a new light-weight
index structure called Positional SMA that narrows scan
ranges within Data Blocks even if the entire block cannot
be ruled out. To achieve highest OLTP performance, the
compression schemes of Data Blocks are very light-weight,
such that OLTP transactions can still quickly access individ-
ual tuples. This sets our storage scheme apart from those
used in specialized analytical databases where data must
usually be bit-unpacked. Up to now, high-performance an-
alytical systems use either vectorized query execution or
“just-in-time” (JIT) query compilation. The fine-grained
adaptivity of Data Blocks necessitates the integration of the
best features of each approach by an interpreted vectorized
scan subsystem feeding into JIT-compiled query pipelines.
Experimental evaluation of HyPer, our full-fledged hybrid
OLTP & OLAP database system, shows that Data Blocks
accelerate performance on a variety of query workloads while
retaining high transaction throughput.

1. INTRODUCTION

In past years, a new database system architecture spe-
cialized for OLAP workloads has emerged. These OLAP
systems store data in compressed columnar format and in-
crease the CPU efficiency of query evaluation by more than
an order of magnitude over traditional row-store database
systems. The jump in query evaluation efficiency is typ-
ically achieved by using “vectorized” execution where, in-
stead of interpreting query expressions tuple at a time, all
operations are executed on blocks of values. The effect is re-
duced interpretation overhead because virtual functions im-
plementing block-wise operations handle thousands of tuples
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Figure 1: We propose the novel Data Block format
that allows efficient scans and point accesses on com-
pressed data and address the challenge of integrating
multiple storage layout combinations in a compiling
tuple-at-a-time query engine by using vectorization.

per function call, and the loop over the block inside these
function implementations benefits from many loop-driven
compiler optimizations including the automatic generation
of SIMD instructions. Examples of such systems are IBM
BLU [30], the Microsoft SQL Server Column Index subsys-
tem [18], SAP HANA [12] and Vectorwise [39]. An alterna-
tive recently introduced way to accelerate query evaluation is
“just-in-time” (JIT) compilation of SQL queries directly into
executable code. This approach avoids query interpretation
and its overheads altogether. Recent analytical systems us-
ing JIT are Drill, HyPer [16, 25] and Impala [34].

This paper describes the evolution of HyPer, our full-
fledged main-memory database system, that was originally
built with a JIT-compiling query engine to incorporate vec-
torization in the context of our novel compressed colum-
nar storage format, “Data Blocks” (cf., Figure 1). HyPer
differs from most of the aforementioned systems in that it
aims to accomodate both high performance OLTP alongside
OLAP running against the same database state and storage
backend. Our primary goal is to reduce the main-memory
footprint of HyPer by introducing compression while retain-
ing the high OLTP and OLAP performance of the origi-
nal system. To achieve this goal, we contribute (i) Data
Blocks, a novel compressed columnar storage format for hy-
brid database systems, (ii) light-weight indexing on com-
pressed data for improved scan performance, (iii) SIMD-
optimized algorithms for predicate evaluation, and (iv) a
blueprint for the integration of multiple storage layout com-
binations in a compiling tuple-at-a-time query engine by us-
ing vectorization.

Designing hybrid database systems is challenging because
the technical demands of both types of workloads are very
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different and many fundamental physical optimizations are
contradictory. Compression, for instance, reduces memory
consumption and can improve analytical query performance
due to reduced bandwidth usage. High performance trans-
actional systems, on the other hand, refrain from using com-
pression in order to keep individual tuple access fast. The
fundamental difference to specialized analytical systems is
that hybrids need to manage hot and cold data efficiently
within a single database instance. One approach to address
this problem is to divide relations into a read- and a write-
optimized partition [17]. Updates are exclusively performed
in the latter partition, which is then periodically merged
into the read-optimized (compressed) partition. However,
the merge process has O(n) time complexity (where n is the
relation’s cardinality) and requires re-compressing of the en-
tire relation. This merge-process is a heavy-weight opera-
tion, which is why we propose an alternative strategy: Re-
lations in our OLTP and OLAP system are divided into
fixed-size chunks, which are individually compressed into
read-optimized immutable Data Blocks when they are iden-
tified as cold using the compression scheme optimal for that
chunk (Figure 2(a)). Once a chunk has been packed into a
Data Block, the contained data is immutable (frozen). Up-
dates are still possible by invalidating the cold record and
moving it to the hot region. Thus, updates are internally
transformed into a delete followed by an insert.

In order to allow for highly efficient access to individual
records by tuple position, we only use light-weight compres-
sion schemes in Data Blocks. While many OLAP systems
employ bit-packing techniques to achieve higher compres-
sion ratios, we refrain from doing so. Our experiments in
Section 5.4 show that even with recent SIMD algorithms [27]
for bit-packed data, scans only work very fast if their early
filtering is either so selective that there are no qualifying
tuples and entire blocks can be skipped, or all tuples in a
block qualify. In case early filtering produces a sparse set
of qualifying tuple positions, the cost of bit-unpacking the
scan columns dwarfs the performance gains made by these

recent techniques in early filtering. Our Data Blocks are
designed to not only keep positional access on compressed
data cheap, for OLTP workloads, but also to allow scan-
based OLAP workloads to reap the benefit of early filtering
while not losing this benefit in sparse tuple decompression.

To speed up scans on Data Blocks, we introduce a new
“Positional” type of Small Materialized Aggregates [23] (PS-
MAs). PSMAs are light-weight indexes that narrow the scan
range within a block even if the block cannot be skipped
based on materialized min and max values (see Figure 2(b)).

The strength of tuple-at-a-time JIT compilation is its abil-
ity to generate code that is highly efficient for both OLAP
and OLTP queries, in terms of needing few CPU instruc-
tions per processed tuple. Where vectorization passes data
between operations through memory, tuple-at-a-time JIT
passes data through CPU registers, saving performance-crit-
ical load/store instructions. Vectorization brings no CPU
efficiency improvement at all for OLTP as its efficiency de-
pends on executing expressions on many tuples at the same
time while OLTP queries touch very few tuples and typi-
cally avoid scans. Choosing different compression schemes
on a per-chunk basis, however, constitutes a challenge for
JIT-compiling tuple-at-a-time query engines. As each com-
pressed block can have a different memory layout, the num-
ber of code paths that have to be compiled for a scan grow
exponentially. This leads to compilation times that are un-
acceptable for ad-hoc queries and transactions.

In this case, vectorized scans come to the rescue because
their main strength is that they remain interpreted and can
be pre-compiled. Further, vectorized scans are amenable to
exploit SIMD and can express adaptive algorithms, open-
ing a path to future further optimizations. As a final con-
tribution we thus show how the strengths of both worlds,
JIT compilation and vectorization, can be fused together
using an interpreted vectorized scan subsystem that feeds
into JIT-compiled tuple-at-a-time query pipelines. For vec-
torized predicate evaluation, we contribute new SSE/AVX2
SIMD algorithms. Overall, we show that this novel query
engine together with our Data Blocks format yields a sys-
tem that can save large amounts of main memory while still
allowing for both highest performance OLTP and OLAP.

2. RELATED WORK

The work most closely related to Data Blocks is the stor-
age format of IBM DB2 BLU [4, 30], which also consists of
blocks representing all columns of a sequence of tuples stored
in compressed columnar format inside the block (a concept
introduced as PAX [3]) and provides mechanisms for early
evaluation of range filters inside the scan. The main differ-
ences are that HyPer avoids bit-packing to keep positional
access fast and introduces the PSMAs that further improve
the evaluation of early selections.

We also note that recent work on advanced bit-packing
schemes [22, 13] and their SIMD implementation [27] fo-
cus on the benefits of early filtering and either ignore the
high per-tuple cost of bit-unpacking, or just position these
bit-packed formats as a secondary storage structure. Our
choice for byte-aligned storage mostly avoids this penalty
and makes early filtering beneficial in a broader range of
query workloads (see Section 5.4).

Vectorwise [39] proposed the idea to decompress chunks of
the data into the CPU cache and process the decompressed
data while it is cached. Vectorwise does not do any early



filtering in scans and fully decompresses all scanned column
ranges as it deems positional decompression too inefficient.
In contrast, the efficient positional access of HyPer permits
reaping the benefits of early evaluation of SARGable pred-
icates inside the scan also in situations with moderate se-
lectivities. Depending on the selectivity, early filtering can
make scans in HyPer factors faster compared to Vectorwise
(cf., Table 2); while on the other hand, byte-aligned com-
pression on average increases space consumption < x1.25
(cf., Table 1).

Abadi et al. [1] thoroughly evaluated various compression
schemes in column-oriented databases. They conclude that
light-weight compression schemes should be preferred over
heavy-weight schemes to operate directly on the compressed
data. In contrast, we only consider filter operations and
point-accesses on compressed data and do not pass com-
pressed data to more complex operators like joins.

Oracle Database [28] uses block-wise compression but uses
fewer compression schemes and is not built for efficient pro-
cessing on modern CPUs. SAP HANA [12] is optimized for
hybrid workloads, but as mentioned, follows a different ap-
proach where the entire relation is optimized for memory
consumption and scan performance, whereas updates are
performed in a separate partition, which is then periodically
merged [17]. Thus, the distinction between hot and cold
data is only implicit and depends on the size of the write-
optimized partition. The Siberia framework [11], which is
part of Microsoft’s Hekaton engine [10], provides an inter-
face for managing cold data. Unlike Data Blocks, it aims to
reduce RAM usage primarily by evicting cold data to disk.

On the issue of integrating JIT-compiled query evaluation
and vectorization, there has been work in Vectorwise on JIT-
compiling projections and hash-joins [31]. This work showed
only modest benefits of JIT integrated into vectorized op-
erators, which subsequently remained an experimental fea-
ture only. The Impala [34] JIT approach is very different
from our tuple-at-a-time JIT system which fuses all oper-
ators inside a query pipeline into a tight single loop. For
each physical relational operator, Impala provides a C++
template class that is compiled with LLVM [19] into inter-
mediate code in advance. During JIT query compilation,
only the methods to handle tuples and expressions inside
these operators are compiled directly into intermediate code
and linked into this pre-compiled template class. The code
of the different operators in a query pipeline are thus not
fused. The Impala operators communicate with each other
by using tuple buffers: in that sense they can be consid-
ered vectorized operators. The problem with this approach
is that the main strength of JIT in minimizing the amount
of needed instructions, passing data through registers and
avoiding load/stores, is lost; the only real benefit is a more
easy-to-understand and -test templated execution engine.

Vectorization enables the use of SIMD and facilitates al-
gorithms that access data belonging to multiple tuples in
parallel. In the database context, SIMD instructions have
been used for example, to speed up selection scans [37, 35,
26], for bit unpacking [35, 27], bulk loading [24], sorting [6],
and breadth-first search on graphs [32].

3. DATA BLOCKS

Data Blocks are self-contained containers that store one
or more attribute chunks in a byte-addressable compressed
format. The goal of Data Blocks is to conserve memory
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while retaining the high OLTP and OLAP performance. By
maintaining a flat structure without pointers, Data Blocks
are also suitable for eviction to secondary storage. A Data
Block contains all data required to reconstruct the stored at-
tributes and our novel light-weight PSMA index structures,
but no metadata, such as schema information, as replicat-
ing this in each block would waste space. Although orthog-
onal to this work, Data Blocks have further been designed
with upcoming secondary storage solutions in mind, includ-
ing non-volatile RAM (NVRAM) and byte-addressable flash
storage. Data stored in Data Blocks on such storage devices
can directly be addressed and read without bringing the
whole Data Block into RAM. Several works have recently
addressed the challenges of such storage devices [8, 33].

In HyPer, Data Blocks are used as a compressed in-memory
storage format for cold data and for persistence. Identifying
cold chunks of a relation is an orthogonal topic to the one
addressed in this publication and has e.g., been addressed
in [15, 9]. Once records have been packed into a Data Block,
the contained data is immutable (frozen). Only delete oper-
ations are permitted where frozen records are marked with a
flag. Updates are internally translated into a delete followed
by an insert into a hot uncompressed chunk of the relation.
In addition to immutability, Data Blocks have several conve-
nient properties: (i) An optimal compression method is cho-
sen based on the actual value distribution of an attribute
within a chunk. This allows high compression ratios (cf.,
evaluation in Section 5). (ii) Only byte-addressable com-
pression formats are used and the use of sub-byte encodings
such as BitWeaving [22] is rejected in order to allow for
efficient point accesses, which are required for OLTP and
also for OLAP processing. (iii) SARGable scan restrictions,
ie., =,1s,<, <, >, >, between, are evaluated on the com-
pressed data representation using our aforementioned SIMD
approach to find matches (cf., Section 4.2). As most com-
pressed data in a Data Block is stored in either a 1-, 2-; or
4-byte integer, our SIMD algorithms provide even higher
speedups than on uncompressed data. (iv) Data Blocks
further contain Small Materialized Aggregates [23] (SMAs)
that include a minimum and a maximum value for each at-
tribute in the Data Block, which can be used to determine
if a Data Block can be skipped during a scan. (v) Addition-
ally, we include a novel light-weight index structure, PSMA



that maps a value to a range of positions on the Data Block
where this value appears. Using the PSMAs, scan ranges can
further be narrowed, even in cases where the value domain
is large and entire blocks cannot be skipped.

SMAs and the PSMA indexes are not restricted to our
Data Blocks format and could also be used for uncompressed
chunks. However, in HyPer we refrain from using these for
hot uncompressed data as maintaining the minimum and
maximum information as well as updating the PSMA in-
dexes would have a very high negative impact on transac-
tion processing performance. The hot part of the database
is usually rather small, such that the additional overhead is
not justified.

3.1 Storage Layout

The first value in a Data Block is the number of records
it contains. Typically, we store up to 2'® records in a Data
Block. The tuple count is followed by information about
each of the attributes. Per attribute we store the compres-
sion method that is used and offsets to the attribute’s Small
Materialized Aggregates (SMA) [23], dictionary, compressed
data vector, and string data. The attribute information is
followed by the actual data beginning with the SMA and
PSMA for the first attribute. Figure 3 shows an example
layout of a Data Block.

Since Data Blocks store data in a columnar layout, but
can store all attributes of a tuple in the same block, they
resemble the PAX [3] storage format.

3.2 Positional SMAs

Data Blocks store SMAs for each attribute in the block.
The basic SMAs consist of the minimum (min) and maxi-
mum (max) value of each attribute stored in a Data Block.
Similar to the Optimized Row Columnar (ORC) Hadoop file
format [14], we use this domain knowledge to rule out entire
Data Blocks if a SARGable (Search ARGument) predicate
does not fall within the min and max values of a Data Block.
Such min/max SMAs work particularly well on sorted at-
tributes. In real data sets this is often the case for date or
incrementing key attributes. If, for example, the lineitem
relation of TPC-H is sorted on 1_shipdate, QJs, which has
a highly selective predicate on 1_shipdate, can be answered
by only looking at a few Data Blocks as most blocks can
already be ruled out by the basic SMAs. If, however, values
are uniformly distributed over the relation, SMAs usually do
not help. A single outlier can increase the min/max range to
such an extent that the SMA cannot rule out the block any-
more. In particular, this is also true for TPC-H data as gen-
erated by the dbgen tool. For our TPC-H evaluation of Data
Blocks, we kept the insertion order of the generated CSV
files, which are only sorted according to the primary keys.
As all relevant attribute values are uniformly distributed
over the blocks in this case, no blocks were skipped during
query processing. Within a Data Block, however, usually
only a fraction of the records will qualify.

To further narrow the scan range we thus extend an at-
tribute’s basic min/max information with a light-weight in-
dex structure, called Positional SMA (PSMA). Internally,
PSMASs consist of a concise lookup table that is computed
when a cold chunk is “frozen” into a Data Block. Each table
entry contains a scan range [b,e) that points to the com-
pressed data inside a Data Block with potential matching
tuples. For fixed size data types, the lookup table contains
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Figure 4: Examples of probing the lookup table of a
Positional SMA index (PSMA)

28 entries for each byte of the data type, i.e., one entry for
the values each byte can store. For example, for a 4-byte
integer attribute, the lookup table contains 4 x 2% = 1024
entries. As such, multiple values map to the same lookup
table entry stored in a single entry. If n values map to the
same entry at index ¢ and [bo,€o), ..., [bn—1,€n—1) are the
ranges associated with these n values, then the range at en-
try 4 is widened to [ming<;<n bj, maxo<j<ne;). Thus, by
design, the entries in the lookup table are more accurate
for small values. Therefore, to improve the accuracy and
the pruning power of the lookup table, we do not use the
actual attribute value v itself, but its distance A(v) to the
SMA’s minimum value. The number of A(v) values whose
range information is stored in the same lookup table entry
increases with the size of the deltas. Delta values that fit
into a single byte exclusively map to a single table entry
(without collisions). For 2-byte delta values, 2° values map
to the same table entry (2'° for 3-byte values, and 2% for
4-byte values). Each entry points to a range on the com-
pressed data where attribute values that map to this entry
are stored. When looking for values equal to v, the associ-
ated scan range points to the position of first and one past
the last element (right exclusive) where the most-significant
non-zero byte equals the most-significant non-zero byte of v.

A lookup proceeds as follows: First, the delta between
the probe value v and the SMA’s min value is determined:
A = v — min. Next, the highest non-0 byte of the delta,
denoted as A, and the number of remaining bytes, denoted
as r, are used to compute the index ¢ into the lookup table:
i = A4 r x 256. To determine the scan range for equality
predicates, only a single lookup is required (Figure 4 illus-
trates example lookups and the implementation is sketched
in Appendix B). For non-equality predicates like between,
we perform multiple lookups and union the ranges of the
entries. In the specific case of a between a and b predicate,
we determine the lookup table indexes i, of a and i, of b
and union the non-empty ranges for the indexes from i, to
ip: range = [min;, <i<i, by, Max;, <i<i, €:)-



Building a lookup table is an O(n) operation. First, the
table is initialized with empty ranges. Then, a scan over
the column is performed. For each value v; of the column
C = (vo,...,vn—1) the associated table entry is determined.
If the entry contains an empty range, then the entry is set
to [¢,7 + 1), otherwise the range end is updated to i + 1.

As shown in Figure 3, an individual lookup table is stored
for each attribute. In the presence of multiple SARGable
predicates on different attributes, the individual lookup ta-
bles are queried and the returned scan ranges are then in-
tersected to further narrow the scan range. Even though we
store a lookup table for each attribute, the PSMAs consume
only a fraction of the space of a Data Block. Each entry
in the PSMA lookup table contains a range which is repre-
sented as two unsigned 4-byte integers. When n-byte values
are indexed, the table consists of nx 2% entries in total. Thus,
typical memory footprints are 2 KB, 4 KB and 8 KB for val-
ues of type 1-, 2- or 4-byte integers, respectively. The PSMA
lookup table is thus significantly smaller than a tree-based
index structure on the 2'¢ values of a Data Block. Since
the PSMA only limits the range that is scanned and gener-
ates the same access path as a full scan, the lookup table
is also more robust than traditional index lookups and does
not incur a performance penalty in cases when the range
of potentially qualifying values is very large (or the entire
vector qualifies). The precision of PSMAs depend on both
the domain of the values as well as their order in the vec-
tor. Scan range narrowing works particularly well for values
that have a small distance from the minimum value as fewer
delta values share a lookup table entry.

PSMA range pruning is particularly efficient for data sets
where similar values are physically clustered, such that val-
ues which share an entry have similar ranges. In the case
of Data Blocks, such a clustering can be created when the
data is re-ordered during freezing. If workload knowledge ex-
ists or was collected while processing queries on the uncom-
pressed chunks, Data Blocks can be frozen based on a sort
criterion to improve accuracy of PSMAs for similar queries.

3.3 Attribute Compression

The main requirement for our compression schemes is that
compressed data needs to remain byte-addressable for effi-
cient point accesses. As shown in our evaluation, sub-byte
encodings (e.g., BitWeaving [22]) would indeed allow for
greater compression ratios but increase the cost for point
accesses and scans with low selectivities by orders of magni-
tude compared to our byte-addressable encodings (cf., Sec-
tion 5.4). The following compression schemes have proven
themselves useful and suitable in terms of compression ra-
tio and overall scan and point access performance in the
context of Data Blocks: (i) single value compression, (ii) or-
dered dictionary compression, and (iii) truncation. For each
attribute, the compression scheme is chosen that is optimal
with regard to resulting memory consumption and data is
only stored uncompressed in the rare case that no compres-
sion scheme is beneficial. Note that the choice of the com-
pression scheme depends largely on the value domain of the
attribute in the specific block. Thus, different blocks that
store different ranges of an attribute of a relation might be
compressed using many different schemes.

Single value compression is a special case of run-length
encoding and is used if all values of an attribute in a block
are equal. This includes the case where all values are NULL.

As Data Blocks are immutable data structures, our or-
dered dictionary compression does not need to be capable of
handling insertions of new values or other kinds of updates.
Immutability allows us to use an order-preserving dictio-
nary compression, a scheme that is too expensive to use if
dictionaries can be updated or grow. In our ordered dictio-
nary, if k¥ < k’ holds for two uncompressed values, k and
k', then the same holds for their dictionary-compressed val-
ues dy,dys : dip < dgr. Immutability also frees us from the
burden of reference counting and free space management.
The byte-width of the dictionary keys is chosen depending
on the number of distinct keys, i.e., 8-bit integers for up
to 256 keys, 16-bit integers for up to 2'¢ distinct keys, and
32-bit for up to 23? distinct keys. A major advantage of
preserving the order and using byte-truncated keys is that
we can use our SIMD-optimized algorithms to find matches
(cf., Section 4.2) on the compressed data. In fact, finding the
matches is likely faster on compressed data than on uncom-
pressed data because only the truncated values need to be
compared and thus more values will fit in a SIMD register.

The truncation compression scheme reduces the memory
consumption by computing the delta between each value and
the attribute’s minimum value: Let A = (ao,...,am) de-
note the uncompressed data and min(A) be the smallest
element in A, then A(A) = (ap — min(A), ..., amn —min(A))
is the compressed data. For these delta values, our trunca-
tion scheme again uses byte-truncation to either 8-bit, 16-
bit, or 32-bit integers. Truncation is not used for strings
and double types. An exception is the string type char(1)
which is always represented as a 32-bit integer (such that it
can store any UTF-8 character). Our truncation scheme is a
special case of Frame of Reference (FOR) encoding where in
our case the minimum value is the reference and each Data
Block contains exactly one frame.

Even though the Data Block compression schemes are
light-weight, we measured compression ratios of up to 5x
compared to uncompressed storage in HyPer. Compared
to Vectorwise’s compressed storage, Data Blocks consume
around 25% more space (see Table 1).

As each Data Block is self contained, the attribute com-
pression is as well limited to a single block. This blockwise
approach has drawbacks in terms of compression ratio. For
example, dictionary compressed string data causes redun-
dancies when identical strings appear in multiple different
chunks. In that case, these strings have to be stored in
multiple dictionaries. However, blockwise compression of-
fers the aforementioned opportunity to chose the best suit-
able compression scheme for each column in each individ-
ual block, which can amortize this overhead. Depending
on the value distribution, the blockwise approach can result
in better compression ratios, compared to when relations
are compressed as a whole. Another opportunity is that in
a chunked relation, the system can easily migrate chunks
between their compressed and uncompressed representation
based on OLTP access frequency.

3.4 Finding and Unpacking Matches

Finding and unpacking matches in Data Blocks proceeds
as follows: First, a Data Block’s SMAs and PSMAs are used
to narrow the scan range based on the scan restrictions. If
the resulting scan range is not empty, further checks are
performed before the actual scan starts. E.g., in case of
dictionary compression and an equality predicate, a block



can be ruled out if a binary search on the dictionary does
not find an entry. If the block cannot be ruled out, then
the actual scan starts and all restrictions are evaluated on
the compressed columns. The scan yields a vector which
contains the positions (or offsets) of the matching tuples.
These matches are unpacked by their positions before being
pushed to the consuming operator. This vector-at-a-time
processing is repeated until no more matches are found in
the Data Block.

In contrast to a scan of an uncompressed chunk, restric-
tions are evaluated on compressed data. As we reject sub-
byte compression techniques in Data Blocks, the search for
matches is thus (in most cases) reduced to an efficient scan
over small integers with a simple comparison. Note that
also string types are always compressed to integers. The
predicate evaluation on compressed data only adds a small
overhead on a per-block-basis as restriction constants have
to be converted into their compressed representation.

Point-accesses to tuples residing in Data Blocks do not re-
quire any of the previous steps. Instead, required attributes
of a record are uncompressed from a single position.

4. VECTORIZED SCANS IN COMPILING
QUERY ENGINES

Data Blocks individually determine the best suitable com-
pression scheme on a per-block and per-column basis. The
resulting variety of physical representations improves the
compression ratio but constitutes a challenge for JIT-compil-
ing tuple-at-a-time query engines: Different storage layout
combinations and extraction routines require either the gen-
eration of multiple code paths or the acceptance of runtime
overhead incurred by branches for each tuple.

Our goal, thus, is to efficiently integrate multiple stor-
age layouts, most specifically for our novel compressed Data
Blocks layouts, into our tuple-at-a-time JI'T-compiling query
engine, that is optimized for both OLTP and OLAP work-
loads. HyPer uses a data-centric compilation approach that
compiles relational algebra trees to highly efficient native
machine code using the LLVM compiler infrastructure. The
compilation times from LLVM’s intermediate representation
(IR) which we use for code generation to optimized native
machine code is usually in the order of milliseconds for com-
mon queries.

Compared to a traditional query execution model where
for each tuple or vector of tuples the control flow passes
from one operator to the other, our query engine generates
code for entire query pipelines. These pipelines essentially
fuse the logic of operators that do not need intermediate
materialization together. A query is broken down into mul-
tiple pipelines where each pipeline loads a tuple out of a
materialized state (e.g., a base relation or a hash table),
then performs the logic of all operators that can work on
it without materialization, and finally materializes the out-
put into the next pipeline breaker (e.g., a hash table). Note
that compared to traditional interpreted execution, tuples
are not pulled from input operators but are rather pushed
towards consuming operators. In this context, scans are leaf
operators that feed the initial query pipelines. The gen-
erated scan code (shown in C++ instead of LLVM IR for
better readability) of two attributes of a relation stored in
uncompressed columnar format looks as follows:

—&— JIT-compiled scan —e— interpreted vectorized scan
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Figure 5: Compile times of a query plan with a scan
of 8 attributes and a varying number of storage lay-
out combinations of the base relation in HyPer.

for (const Chunk& c:relation.chunks) {
for (unsigned row=0;row!=c.rows;++row) {
auto aO=c.column[0].data[row];
auto a3=c.column[3].data[row];
// Check scan restrictions and push a0,a3
// into consuming operator

}}...

Note that for reasons of simplicity we omit multi-version
concurrency control checks here. In order to perform the
same scan over different storage layout combinations de-
pending on the used compression techniques, the first pos-
sibility is to add a jump table for each extracted attribute
that jumps to the right decompression method:

const Column& cO=c.column[0];
// Expensive jump table per attribute
switch (cO.compression) {
case Uncompressed:
case Dictionary: a@=c0.dict[key(c0O.data[row])];

Since the outcome of the jump table’s branch is the same
within each chunk, there will not be a large number of branch
misses due to correct prediction of the branches by the CPU.
Yet, the introduced instructions add latency to the inner-
most hot loop of the scan code, and, in practice, this results
in scan code that is almost 3 x slower than scan code without
these branches.

An alternative approach that does not add branches to the
innermost loop is to “unroll” the storage layout combinations
and generate code for each of the combinations. For each
chunk, a computed goto can then be used to select the right
scan code:
for (const Chunk& c:relation.chunks) {

// Computed goto to specialized "unrolled"

// code for the chunk’s storage layout
goto *scans[c.storagelLayout];

addicta3uncompressed:

for (unsigned row=0;row!=c.rows;++row) {
a0=c.column[0] .dict[key(cO.data[row])];
a3=c.column[3].data[row];

}}...

Unrolling the combinations, however, requires the query
engine to generate a code path for each storage layout that is
used. The number of these layouts grows exponentially with
the number of attributes n. If each attribute may be rep-
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Figure 6: Integration of Data Blocks in our query engine: vectorized scans on Data Blocks and uncompressed
chunks on the left share the same interface and evaluate SARGable predicates on vectors of records using
SSE/AVX2 SIMD instructions (cf., Section 4.2). Matches are pushed to the query pipeline tuple at a time.
The original JIT-compiled scan on the right evaluates predicates as part of the query pipeline.

resented in p different ways, the resulting number of code
paths is p™; e.g., for only two attributes and six different
representations there are 36 generated code paths. While
one can argue that not all of these combinations will ac-
tually occur in a relation’, a small number of combinations
will drastically increase code size and thus compilation time.
This impact is shown in Figure 5, which plots the compila-
tion time of a simple select * query on a relation with 8
attributes and a varying number of storage layout combina-
tions.

Given the exploding compile time, we thus turned to call-
ing pre-compiled interpreted vectorized scan code for vectors
of say 8K tuples. The returned tuples are then consumed
tuple-at-a-time by the generated code and pushed into the
consuming operator:

while (!state.done()) {
// Call to pre-compiled interpreted vectorized scan
scan(result,state, requiredAttributes, restrictions);
for (auto& tuple:result) {
auto aO=tuple.attributes[0];
auto a3=tuple.attributes[1];
// Check non-SARGable restrictions and push a0,a3
// into consuming operator

}}...

Using the pre-compiled interpreted vectorized scan code,
compile times can be kept low, no matter how many storage
layout combinations are scanned (cf., Figure 5). Addition-
ally, SARGable predicates can be pushed down into the scan
operator where they can be evaluated on vectors of tuples.

4.1 Integration in HyPer

Our JIT-compiling query engine is integrated in our full-
fledged main-memory database system HyPer that supports
SQL-92+ query processing and ACID transactions. As il-
lustrated in Figure 6, vectorized scans on hot uncompressed
chunks and compressed Data Blocks share the same interface
in HyPer and JIT-compiled query pipelines are oblivious to
the underlying storage layout combinations.

LOur proposed compressed Data Blocks use over 50 different
layouts for the lineitem relation of TPC-H scale factor 100.

In HyPer, vectorized scans are executed as follows: First,
for each chunk of a relation a determination is made as to
whether or not the block is frozen, i.e., compressed. If yes,
then a Data Block scan is initiated, if not, a vectorized scan
on uncompressed data is initiated. Next, the JIT-compiled
scan glue code calls a function that generates a match vec-
tor containing the next n positions of records that qualify
restrictions. n is the vector size and determines how many
records are fetched before each of these records are pushed
to the consuming pipeline one tuple at a time. The ratio-
nale for splitting the scan into multiple invocations is cache
efficiency: As the same data is accessed multiple times when
finding the matches, potentially unpacking these matches, if
compressed, and passing them to the consumer, the vector-
wise processing in cache-friendly pieces minimizes the num-
ber of cache misses (see Appendix A for an experiment with
different vector sizes). In HyPer, the vector size is set to
8192 records. After finding the matching positions, scan
glue code on a cold compressed Data Block calls a function
that unpacks the matches into temporary storage, and a scan
on an uncompressed chunk copies the matching required at-
tributes into temporary storage. Finally, the tuples in the
temporary storage are pushed to the consuming operator
tuple at a time. Even though vectorized scans are indeed
copying more data, our evaluation of vectorized scans in our
JIT-compiling query engine shows that most of the time the
costs for copying can be neglected and vectorized predicate
evaluation can outperform tuple-at-a-time evaluation.

In this respect, @1 and Qg of TPC-H exemplify two ex-
tremes: for Q1 most tuples qualify the scan restriction and
vectorized scans copy almost all of the scanned data. As
such, the runtime of @1 suffers by almost 50% (cf., Ap-
pendix). Note that without predicates, our vectorized scan
uses an optimization whereby it does not copy data if all tu-
ples of a vector match and performance is not degraded; due
to the uniform value distribution of the restricted attributes,
this optimization is not helpful if predicates are SARGd. For
Qs¢, on the other hand, only a small percent of tuples qualify
the scan restriction. On uncompressed data, the vectorized
evaluation of predicates improves runtime with vectorized
scans over JIT-compiled scans up to 2.3% (cf., Appendix F).
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Figure 7: Evaluation of predicates on compressed and uncompressed data using SSE/AVX2 SIMD instructions

Using vectorized scans on our novel compressed Data Blocks,
query runtimes on TPC-H improve by more than 2.3x: run-
time of Q¢ improves by 6.7x and the geometric mean of the
22 query runtimes improves by 1.27x.

4.2 Finding Matches using SIMD Instructions

Vectorized processing enables us to employ SIMD instruc-
tions for evaluating SARGable predicates. As mentioned be-
fore, during the evaluation phase the positions (or offsets) of
the qualifying elements are stored in a vector. We refer to
the content of this vector as match positions®. For example,
if the predicate P(a) : 3 < a < 5 is applied to the attribute
vector AT = (0,1,5,2,3,1), then the resulting match posi-
tions are M7 = (2,4). If additional conjunctive restrictions
are present, then these restrictions need to be applied only
to the tuples referred in M. At this low level, query engine
only has to cope with conjunctive predicates, thus the match
vector is shrunk with any additional predicate. Algorithmi-
cally, we distinguish between finding initial matches, which
fill a match vector, and an optional reduce matches where
an already existing match vector is shrunk.

In scalar (non-SIMD) code, restrictions are applied to a
single attribute value at a time and evaluated to a single
boolean value. When SIMD instructions are employed, the
necessary comparisons are performed on multiple attributes
in parallel. In contrast to the scalar code, a SIMD com-
parison yields a bit-mask which identifies the qualifying el-
ements. When n elements are processed in parallel, then
the resulting bit-mask is stored in a SIMD register where
all bits of the n individual SIMD lanes are either set to 0
or 1. The challenging part is to compute the positions of
matching records based on the given bit-mask. Possible so-
lutions are (i) iterating over the bit-mask or (ii) performing
a tree reduction where the complexity is O(n) or O(logn),
respectively.

2This concept is also known as selection vector [5].

We found that these conversions of the bit-mask into a
match position vector is too expensive. Therefore, we make
use of a pre-computed table to map the bit-masks to po-
sitions whereby a movemask instruction provides the neces-
sary offset. With this approach, which is illustrated in Fig-
ure 7(a), the mapping can be done in constant time. Each
table entry reflects a possible outcome of an n-way SIMD
comparison. For example, in Figure 7(a) an 8-way compar-
ison is performed where the 0th, the 3rd, the 4th and the
6th element (counted from left to right) satisfy the predi-
cate. All bits of the 4 corresponding SIMD lanes are set to
1, whereas the others are all set to 0. The movemask instruc-
tion extracts the most significant bit of each SIMD lane and
stores the result in an integer value. In the example, this
value is 100110102 = 15419. This value is used as an offset
to access the corresponding entry in the lookup table. The
table entry reflects the outcome of the 8-way comparison.
In the example, the result is an 32-bit integer vector where
the positions of the matching elements are (0,3,4,6). The
global scan position is added to the (local) match positions
before the match vector is updated.

As each of the n attribute values stored in a SIMD register
may or may not be a match, we have to store each possible
outcome in the table which results in 2" entries. Naturally,
the table can become extremely large. E.g., for attributes of
type 8-bit integer processed in 256-bit AVX2 registers (using
a 32-way comparison), the table would contain 252 entries
(= 512 GB). Therefore, we limit the table size to 2% entries
and perform multiple lookups if necessary. A single entry
in the lookup table can therefore contain the positions of
up to 8 matches. Each match position is represented as an
unsigned 32-bit integer, thus the size of the entire lookup
table (2% x 8 x 4B = 8 KB) is sufficiently small to fit into L1
cache (which is 32 KB on recent Intel CPUs).

Along with the match positions, each table entry also
contains the number of matching elements (not depicted).
These values are stored in the low-order bits to keep the
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memory footprint small and to avoid cache pollution. Thus,
the extraction of the actual match positions requires an addi-
tional right-shift of the pre-computed position vectors. The
number of matches per table entry are required to increment
the write offset of the global match vector later on. We show
the implementation details in Appendix C.

Applying additional restrictions is quite different to find-
ing initial matches for two reasons: (i) The accessed el-
ements are no longer contiguously stored in memory, as
only elements are read that satisfy the first predicate, and
(ii) a match vector already exists and needs to be shrunk.
Nevertheless, our SIMD optimized implementation follows
an approach similar to the one to find the initial matches.
The most notable difference is that elements are directly
gathered from their respective memory location into SIMD
registers as sketched in Figure 7(b). Again, we make use
of our lookup table consisting of pre-computed position vec-
tors. In contrast to the find initial matches implementation,
the table entries are now used as shuffle control masks to
manipulate the match vector. In Figure 7(b), for exam-
ple, the predicate is applied to the attributes at positions
(17,18, 20,21, 25, 26, 29, 31) where the elements in the SIMD
lanes (0,2,4,5) qualify. The match positions are then shuf-
fled according to the table entry: The zeroth element (value
17) remains in SIMD lane 0, the second element (value 20)
is shuffled to the SIMD lane 1, and so on. Finally, the re-
sult (17,20, 25,26, —, —, —, —) is written back to the match
vector and the write offset is incremented by the number of
matching elements. As only 4 of the 8 processed elements
qualify the result contains don’t care values (denoted as —)
which are overwritten in the next iteration.

Unfortunately, the gather instruction is only available for
32- and 64-bit types. For 8- and 16-bit values we also draw
on a 32-bit gather which reduces the degree of parallelism
by a factor of 2 or 4, respectively. Thus, the performance
improvements observed in our microbenchmarks are mostly
independent from the underlying data types.

We observe speedups of almost 4 x with SSE and more
than 5 X with AVX2 in microbenchmarks on a desktop Has-
well CPU. Figure 8 shows the speedup of the evaluation of
a between predicate where 20% of the tuples qualify. The
degree of parallelism and therefore the performance gains
highly depend on the bit-width of the underlying data type.
For 64-bit integer attributes we observe speedups of 1.5 x
with AVX2, whereas the degree of parallelism with SSE is
too small to recognize performance benefits.

Our implementation for finding initial matches is insensi-
ble to varying selectivities due to the pre-computed positions
table and varies only in the number of match positions writ-
ten to the position vector. However, due to the fact that
we process the input in a vectorized manner, the size of the
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Figure 9: Applying an additional restriction with
varying selectivities of the first predicate and the
selectivity of the second predicate set to 40%

match vector is limited to the number of tuples processed
at a time (which is set to 16 K in this experiment). Thus,
the number of matches written to the vector has no notable
effects on performance.

The implementation for reducing the match vector by ap-
plying additional restrictions is also insensible to varying
selectivities of the applied restriction. However, scan per-
formance highly depends on the selectivity of the preceding
restrictions due to non-contiguous memory access pattern.
When matching tuples are uniformly distributed, as they
are in our experiment, the selectivity of the preceding pred-
icates has the highest impact. Figure 9 shows these effects
and compares the performance of our AVX2 implementation
with a sequential version (branch-free scalar code). For inte-
ger attributes (up to 32-bit) we observe performance gains
ranging from 1.0 x to 1.25 x with increasing selectivities.
For 64-bit integer values, the reduction does not benefit from
SIMD instructions. At higher selectivities, the SIMD imple-
mentation performs even worse than the scalar code.

Performance gains with other data types are almost iden-
tical, which is attributed to the missing gather instructions
for 8- and 16-bit values. We would like to point out that the
distribution of qualifying tuples is the crucial factor here,
thus speedups of 1.25 x are also possible with highly selec-
tive predicates, e.g., when the data has a (natural) ordering.

The SIMD optimized algorithms presented here only work
for integer data. For other data types and non-SARGable
predicates we fall back to scalar implementations. However,
our novel compressed Data Block format discussed in the
previous Section compresses data into byte-addressable in-
teger data, including string-like attributes. Thus, OLAP
workloads highly benefit from the SIMD algorithms when
large portions of the data are packed into Data Blocks.

S. EVALUATION

In this section we evaluate our implementation of inter-
preted vectorized scans, SIMD-optimized predicate evalua-
tion, and the compressed Data Blocks format in our JIT-
compiling query engine. The query engine we used for our
experiments, is part of our full-fledged main-memory data-



TPC-H SF100 IMDB cast info  Flights scan type geometric mean  sum
uncompressed HyPer
CSV 107GB 1.4GB 12GB JIT (uncomressed) 0.586s 21.7s
HyPer 126 GB 1.8GB 21GB Vectorized (uncompressed) 0.583s (1.01x) 21.6s
Vectorwise 105 GB 0.72GB  11GB + SARG 0.577s (1.02x) 21.8s
comprossod Data Blocks (compressed) 0.555s (1.06x) 21.5s
P + SARG/SMA 0.466s (1.26x)  20.3s
HyPer 66 GB 0.50GB 4.2GB + PSMA 0.463s (1.27x) 20.2s
Vectorwise 54GB 0.24GB 3.2GB -
Vectorwise
uncompressed storage 2.336s 74.4s

Table 1: Size of TPC-H, IMDB cast info, and a flight
details database in HyPer and Vectorwise.
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Figure 10: Compression ratio of TPC-H (scale factor
100), IMDB cast info, and a flight arrival and depar-
ture details data set for various Data Block sizes in
HyPer (compared to uncompressed storage).

base system HyPer that supports SQL-92 queries and ACID
transactions. We further show why we rejected sub-byte en-
codings of data by comparing our byte-addressable compres-
sion approach with SIMD-optimized horizontal bit packing.
Unless otherwise stated, the experiments were conducted
on a 4-socket Intel Xeon X7560 2.27 GHz (2.67 .GHz maxi-
mum turbo) NUMA system with 1 TB DDR3 main memory
(256 GB per CPU) running Linux 3.19. Each CPU has 8
cores (16 hardware contexts) and 24 MB of shared L3 cache.
For experiments targeting the AVX2 ISA, we use an Intel
Haswell i5-4670T CPU 2.3 GHz (3.3 GHz maximum turbo)
with 16 GB DDR3 memory and 6 MB of shared L3 cache.

5.1 Compression

We evaluated the compression ratio of our compressed
Data Blocks in an initial experiment. As input data sets
we chose TPC-H scale factor 100, the largest relation of the
Internet Movie Database (IMDB), which contains the casts
of movies (cast info), and a data set consisting of flight ar-
rival and departure details for all commercial flights within
the USA, from October 1987 to April 2008%. Table 1 shows a
comparison of uncompressed and compressed database sizes
for these data sets in Vectorwise and HyPer.

Vectorwise is the commercial version of MonetDB /X100 [5]
and uses a number of light-weight compression techniques
that can handle non-compressible values (outliers) through
a technique called “patching”, which stands for the “P” in
PFOR (Frame of Reference), PFOR-DELTA (delta encoding
on PFOR), and PDICT (dictionary encoding) compression
schemes [40, 38]. Run-length encoding is used where appli-
cable. With these heavier compression schemes, Vectorwise

Shttp://stat-computing.org/dataexpo/2009/

compressed storage 2.527s (0.92x)  78.5s

Table 2: Runtimes of TPC-H queries (scale factor
100) using different scan types on uncompressed and
compressed databases in HyPer and Vectorwise.

on average saves 25% more space than HyPer. However,
this savings come at the cost of poorer query performance.
Vectorwise’s compression schemes were designed to work for
situations where the database does not fit in memory and
aims to accelerate disk load times. Processing compressed,
memory-resident data is acceptably fast, but can be slower
than processing uncompressed data [2]. In particular, we
measured that TPC-H queries Q1 and Qs were, respectively,
18% and 38% slower on compressed storage compared to
uncompressed storage in Vectorwise (scale factor 10). Point
accesses in Vectorwise are always performed as a scan; albeit
on a scan range that is narrowed by indexes. Data Blocks,
on the other hand, are designed around the assumption that
most of the data fits into main memory. Performance-wise,
our goal with Data Blocks is to be at least equally fast at
query and transaction processing compared to uncompressed
in-memory storage.

Figure 10 shows the compression ratio of the aforemen-
tioned data sets for various Data Block sizes from 2! to
our default of 2'® records per Data Block. As expected, if
the number of compressed records in a block becomes too
small, the overhead of block metadata worsens the compres-
sion ratio. In our experiments, 2'¢ records per Data Block
proved to offer a good tradeoff between compression ratio
and query processing speed as most values are still com-
pressed into small integer types.

5.2 Query Performance

For our query performance evaluation, we first looked at
TPC-H scale factor 100 and compared query runtimes in
HyPer with JIT-compiled scans and vectorized scans on our
uncompressed storage format, and vectorized scans on our
compressed Data Block format. A summary of the results is
shown in Table 2; full results are shown in Appendix F. 64
hardware threads were used and runtimes are the median
of several measurements. Our results suggest that query
performance does not change significantly with vectorized
scans instead of JIT-compiled scans. This is also true if
we push SARGable predicates (+SARG) into the vectorized
scan. However, compilation times with vectorized scans is
almost half of the time needed with JIT-compiled scan code
(see numbers in parentheses in Appendix F). If we look at
query performance on our Data Blocks format, we can see
that if using only the compression aspect of Data Blocks,
query performance also stays the same. If we push SAR-
Gable predicates (+SARG/SMA) into the scan on Data
Blocks, we see a speedup of almost 26% in the geometric
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Figure 11: Speedup of TPC-H Q6 (scale factor 100)
on block-wise sorted data (+SORT)

mean of query runtimes. We cannot measure the impact
of SARGA predicates without SMA block skipping because
our implementation of SARGing, by design, relies on block
skipping. Nevertheless, no blocks were skipped in our exper-
iment due to the uniform distribution of values in TPC-H
and the performance improvement is only due to our efficient
SIMD-optimized evaluation of predicates on vectors of the
compressed data. As data is uniformly distributed, adding
the PSMAs (+PSMA) does not provide a significant per-
formance boost on TPC-H. We further compared HyPer to
Vectorwise on its uncompressed and compressed storage for-
mats. In Vectorwise, query processing on the uncompressed
format is around 8% faster than on its compressed format
when data is cached in memory. This suggests that even
with light-weight compression techniques, such as those used
in Vectorwise, it is actually very difficult to get a speedup
from compression.

To further show the impact that PSMAs can have in more
realistic scenarios than the default TPC-H, we conducted
another TPC-H experiment for which we sorted each Data
Block of the lineitem relation on 1_shipdate. Due to the
initial uniform distribution of dates, each block still con-
tains data from every year of the data set, but inside the
blocks the dates are sorted. Establishing this order can be
done automatically when freezing a block (cf., Section 3.2).
Figure 11 shows that a significant additional speedup can
be gained by the PSMAs for TPC-H Qs in this scenario.
Another query that profits even more from the SMAs and
PSMAs is the following on the flights data set: select carri-
ers and their average arrival delay in San Francisco for the
years 1998 to 2008 (see Appendix D for the query text). As
the relation is naturally ordered on date, most blocks are
skipped due to the SMAs and on the remaining blocks the
PSMASs narrow the scan range based on the restriction on
the destination airport. Runtime of this query improves by
more than 20X, compared to using a JIT-compiled scan on
the uncompressed format.

5.3 OLTP Performance

To measure the overhead of accessing a record that is
stored in a Data Block compared to uncompressed chunks,
we performed a random point access experiment where we
selected random records from a compressed TPC-H cus-
tomer relation (scale factor 100, i.e., 15M records). Table 3
shows the measured lookup throughputs. With a primary
key index (traditional global index structure), we measured
an overhead of around 60% when accessing records in Data
Blocks. Without the primary key index, all lookups are per-
formed as scans. In this case the scans on Data Blocks can
be faster than scanning uncompressed chunks because Data

Ordered* Shuffled®

uncompressed PK index 551,268 545,554
(JIT) no index 36 36
uncompressed PK index 550,661 566,893
(Vectorized)  no index 26 26
Data Blocks PK index 301,750 274,198
no index 17,508 41

Data Blocks PK index 276,014 294,291
+PSMA no index 71,587 40

* customer is ordered on c_custkey as generated by dbgen

shuffled customer relation (no longer ordered on c_custkey):
SMAs/PSMAs can no longer narrow scan range

o

Table 3: Throughput (in lookups per second) of
random point access queries select * from customer
where c_custkey = randomCustKey() on TPC-H scale
factor 100 with and without a primary key (PK)
index on c_custkey and using JIT-compiled and vec-
torized scans on uncompressed storage and Data
Block scans with and without PSMAs.

Blocks contain SMAs and PSMAs that can narrow the scan
range. This is especially true if the customer relation is or-
dered on c_custkey, as is the case if the data is generated
with the TPC-H dbgen tool. We also shuffled the data to
show that without that order the SMAs and PSMAs cannot
improve lookup performance. As such, for OLTP workloads,
SMAs/PSMAs are not a general-purpose replacement for a
traditional index structure. In Vectorwise, which uses no
traditional index structure, we measured a random lookup
throughput of 17 lookups per second.

We further ran TPC-C experiments with 5 warehouses. In
a first experiment we only compressed old neworder records
into Data Blocks, which reflects the intended use case as hot
data should remain in uncompressed chunks. We measured
a transaction throughput of 89,229 transactions per second
on uncompressed storage and 88,699 transactions per sec-
ond if the cold neworder records are stored in Data Blocks.
The overhead stems from the additional switch on each ac-
cess that determines if an uncompressed or a compressed
chunk is accessed. In a second experiment, we executed only
the read-only TPC-C transactions order status and stock
level on an uncompressed TPC-C database and a TPC-
C database that is completely stored in Data Blocks. On
uncompressed storage we measured a transaction through-
put of 119,889 transactions per second, on Data Blocks we
measured 109,649 transactions per second; a difference of
9%. This shows that even if the individual record lookup
throughput is decreased by 60%, in real transactional work-
loads this translates to a low percentage overhead if cold
compressed data is accessed.

As Data Blocks primarily target OLAP workloads, we
omit the mixed workload CH-benCHmark [7]. Our thorough
evaluation with TPC-H and TPC-C covers the two extremes
of the CH benchmark and we expect the results to be some-
where in between.

5.4 Advantages of Byte-Addressability

As previously mentioned, sub-byte encodings of values
(e.g., BitWeaving [22]) can achieve higher compression ra-
tios compared to byte-aligned truncation, which we use in
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Figure 12: Horizontal bit-packing compared to Data
Blocks with byte-addressable compression schemes

Data Blocks. In this microexperiment, we show why we con-
sciously decided against using sub-byte encodings in HyPer
and how point accesses and scans with low selectivities suffer
from these encodings.

For this experiment we use three columns A, B and C
populated with 26 integer values, whereas the domain of the
values in column A and B is [0,2'%] and dom(C) = [0, 25].
Thus, the columns can be horizontally bit-packed into 9 bits
or 17 bits, respectively. Intentionally, the domains exceed
the 1-byte and 2-byte truncation by one bit which repre-
sents the worst case for Data Blocks as they are forced to
use 2- and 4-byte codes. Therefore, the compression ratio
of bit-packing is almost two times higher in this scenario.
As workload, we evaluate a between predicate of the form
Il < A < r and unpack the matching tuples into an output
buffer. The benchmark is conducted on a Haswell i5-4670T
CPU with the AVX2 instruction set. The codebase that we
used for horizontal bit-packing is the highly SIMD-optimized
implementation of [27]. The only bit-packing-related exten-
sion is a function that allows us to unpack a single tuple at
a given position.

We first compare the costs for predicate evaluation with-
out unpacking. The bit-packing implementation yields a
bitmap where set bits identify matching positions. In con-
trast, our Data Blocks API returns a vector of 32-bit in-
tegers populated with the corresponding match positions.
For our experiment we transform the bitmap in the case of
bit-packing into a position vector to make the results compa-
rable. Figure 12(a) shows that Data Blocks are robust with
respect to varying selectivities. Horizontal bit-packing on
the other hand is not. Bit-packing suffers from branch mis-
predictions in the aforementioned conversion of the bitmap.
Therefore, we applied our pre-computed position table ap-

proach (cf., Section 4.2) to the bit-packing implementation,
which makes bit-packing also robust to changing selectivi-
ties. Overall, predicate evaluation on Data Blocks is still
1.8x faster than predicate evaluation on the horizontal bit-
packed format.

We compare Data Blocks to two bit-packing alternatives
to evaluate unpacking performance: (i) Positional access,
where all matching tuples are unpacked sequentially with
scalar code, and (ii) Unpack all and filter, where all tuples
are first unpacked using SIMD code and then sequentially
filtered using the positions vector. Figure 12(b) shows the
costs per extracted tuple for all three implementations with
varying selectivities. Data Blocks outperform bit-packing in
almost all cases, except when all tuples qualify where bit-
packing is approximately 9% faster. The bit-packing im-
plementation that extracts individual tuples based on the
match vector performs well for selectivities less than 20%.
If more than 20% of the tuples qualify, the unpack all and
filter strategy performs better than positional accesses due
to SIMD. The costs for unpacking are significantly higher for
queries with moderate selectivities due to unpacking mostly
non-qualifying tuples. Compared to the SARGing costs, un-
packing clearly dominates in all cases. E.g., if 10% of the
tuples qualify, then 10% of the cycles are spent in predicate
evaluation with Data Blocks and only 5% for bit-packing,
whereas 90% and 95% of the time is used for unpacking.

When a sparse set of tuples is selected by the SARGable
predicate, we only benefit from this early selection iff indi-
vidual tuples can be accessed and decompressed fast. On the
other hand, if larger (dense) sets of tuples are selected, then
early evaluation of predicates becomes increasingly point-
less. In the above example (selecting 10% uniformly), ex-
tracting the selected tuples from a Data Block is more than
3x faster, while selection is 1.8x faster. As HyPer has to
provide fast access to individual compressed records and also
needs to deliver robust performance for scans with modest
selectivities, we cannot use bit-packing in our Data Blocks.

We intentionally do not show results for vertical bit-pack-
ing as it trades faster SARGing for even higher decompres-
sion costs and is therefore even less suitable for our high
performance OLTP and OLAP database system. Neverthe-
less, the recent work of Li et al. [21] shows how SARGing on
vertical bit-packed data can be significantly improved, which
might offer new applications of vertical bit-packed data, such
as using it as secondary index.

6. CONCLUSION

The goal of this work was to reduce the main-memory
footprint in high performance hybrid OLTP & OLAP data-
base systems without compromising high query and trans-
actional performance. To achieve this goal, we developed a
novel compressed columnar storage format for hybrid data-
base systems, termed Data Blocks. This compressed data
format was further improved by light-weight intra-block in-
dexing, called Positional SMA, for improved scan perfor-
mance and SIMD-optimized predicate evaluation. The fine-
grained adaptivity of Data Blocks necessitated the integra-
tion of JIT-compiled query execution with vectorized scans
in order to achieve highest possible performance for com-
pilation as well as query execution. This paper serves as
a blueprint for integrating all these innovative techniques
into a full-fledged hybrid OLTP & OLAP system. Further
optimization potentials are outlined in Appendix E.
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APPENDIX

A. IMPACT OF VECTOR SIZE ON QUERY
PERFORMANCE

Figure 13 shows the runtime of the TPC-H 100 benchmark
with varying vector sizes. Query runtimes slightly increase
for small vector sizes due to interpretation overheads (e.g.,
function calls). On the other hand, when the records stored
in a vector exceed the cache size, query performance de-
creases as records are evicted to slower main memory before
they are pushed into the JIT-compiled query pipeline.

—a=— vectorized scan on uncompressed —e— Data Block scan
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Figure 13: Geometric mean of TPC-H 100 query
runtimes depending on vector size.

B. PSMA IMPLEMENTATION

The following listing sketches the code for constructing
and probing the PSMAs. Before any PSMA access, the val-
ues are first converted into deltas relative to the smallest
value in the current data block (min). The build scans the
data block once and remembers the first and last occurrence
of a value in the respective slot.

// Compute the PSMA slot for a given value
uint32_t getPSMASlot(T value,T min) {
// d = delta
uint64_t d=value-min;
// r = remaining bytes (note: clz is undefined for 0)
uint32_t r=d ? (7-(__builtin_clzll(d)>>3)) : 0;
// m = most significant non-zero byte
uint64_t m=(d>>(r<<3));
// return the slot in PSMA array
return m+(r<<8);

}

// Initialize all slots to empty ranges
for (auto& entry : psma)
entry={0,0};

// Update ranges for all attribute values
for (uint32_t tid=0; tid!'=values.size(); ++tid) {
auto& entry=psma[getPSMASlot(values[tid],min)];
if (entry.empty())
entry={tid, tid+1};
else
entry.end=tid+1;

At query processing time, the potential range of tuples
can now immediately be looked up in the PSMA:

// value = query constant of an equality predicate
auto scanRange=psma[getPSMASlot(value,min)];

C. SIMD IMPLEMENTATION OF FINDING
INITIAL MATCHES

The following code listing shows the details of our find-
matches implementation that makes use of the pre-computed
table to map bit-masks to match positions. As the match
table is limited to 256 entries, each entry can store 8 match
positions. In most cases, we compare more elements in par-
allel which means multiple lookups are necessary. In the
listing below, we evaluate a predicate on 32 8-bit integers at
a time which results in 4 lookups.

Declarations:

// Vector of 8 32-bit integers.
typedef union {

int32_t cell[8];

__m2561i reg256;

_-m128i regl28[2];

} vector8_int32;

using matchTableEntry = vector8_int32;

const matchTableEntry matchTable[256]{
{{-256,-256, -256, -256, -256, -256, -256, -256} },
{{1,-255,-255, -255, -255, -255, -255, -255}},
{{257,-255,-255, -255,-255, -255, -255, -255}},
/] ...
{{263,519,775,1031,1287,1543,1799, -249}},
{{8,264,520,776,1032,1288,1544,1800}}

+

Find matches function:

if (reinterpret_cast<uintptr_t>(&column[from])%32) {
// Process non-32-byte aligned elements sequentially

// Recurse

} else {

// Process 32-byte aligned elements (using SIMD/AVX2)
const uint32_t simdwWidth=32;

const uint32_t numSimdIterations=(to-from)/simdwWidth;
const __m2561i comparisonValueVec=set(comparisonValue);
const __m256i vecl6=_mm256_setl epi32(16);

uint32_t* writer=matches;

for (uint32_t i=0;i!=numSimdIterations;i++) {
uint32_t scanPos=from+(ixsimdWidth);

// Load and compare 32 values

__m256i attributeVec=_mm256_load_si256(
reinterpret_cast<__m256i*>(&column[scanPos]));

__m256i selMask=cmp(attributeVec, comparisonValueVec);

int bitMask=_mm256_movemask_epi8(selMask);

// Lookup match positions and update positions vector

auto& matchEntryO=matchTable[bitMask&OxFF];

__m256i scanPosVecO=_mm256_setl _epi32(scanPos);

_mm256_storeu_si256(
reinterpret_cast<__m256i*>(writer),
_mm256_add_epi32(scanPosVecO,

_mm256_srai_epi32(matchEntry0.reg256,8)));
writer+=static_cast<uint8_t>(matchEntry0.cell[0]);

auto& matchEntryl=matchTable[ (bitMask>>8)&0xFF];
__m256i scanPosVecl=_mm256_setl _epi32(scanPos+8);
_mm256_storeu_si256(
reinterpret_cast<__m256i*>(writer),
_mm256_add_epi32(scanPosVecl,
_mm256_srai_epi32(matchEntryl.reg256,8)));
writer+=static_cast<uint8_t>(matchEntryl.cell[0]);

auto& matchEntry2=matchTable[ (bitMask>>16)&0xFF];
__m256i scanPosVec2=
_mm256_add_epi32(scanPosVecO,vecl6);



>

/ wobe side
s

1. Find matches
2. Extract & hash key

3. Early probes

/; ///ii{—jiffififi’///f

4. Unpack matches

hash table Data Block scan

Figure 14: Early probing of vectors of matching keys
from DataBlocks: pointer tags in the hash table are
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_mm256_storeu_si256(
reinterpret_cast<__m256ix>(writer),
_mm256_add_epi32(scanPosVec2,

_mm256_srai_epi32(matchEntry2.reg256,8)));
writer+=static_cast<uint8_t>(matchEntry2.cell[0]);

auto& matchEntry3=matchTable[ (bitMask>>24)&0xFF];
__m2561 scanPosVec3=
_mm256_add_epi32(scanPosVecl,vecl6);
_mm256_storeu_si256(
reinterpret_cast<__m256ix>(writer),
_mm256_add_epi32(scanPosVec3,
_mm256_srai_epi32(matchEntry3.reg256,8)));
writer+=static_cast<uint8_t>(matchEntry3.cell[0]);

// [...] Process remaining elements sequentially
return writer-matches; // Number of matches

}

D. FLIGHT DATA SET QUERY

select
uniquecarrier as carrier,
avg(arrdelay) as avgdelay
from
flights
where
year between 1998 and 2008
and dest = 'SFO’
group by
uniquecarrier
order by
avgdelay desc

E. FURTHER OPTIMIZATIONS

Vectorized scans that feed JIT-compiled query pipelines,
as implemented in our hybrid OLTP and OLAP system,
enable a large space of further optimization opportunities.

One research direction is to integrate more SIMD process-
ing besides SARGable predicate evaluation in the vectorized

scans. While SIMD processing is generally impossible in a
tuple-at-a-time compiled loop produced by our JIT engine,
vectorized scans will enable this possibility. One idea is
to extend the vectorized scan with eager aggregation [36]
functionality. This functionality would be able to calcu-
late (arithmetic) expressions and evaluate aggregates only
on the data inside one chunk. The resulting pre-aggregated
data would then be re-aggregated by a true aggregation op-
erator transforming the (non-holistic) aggregates in a way
usually done for distributed, parallel, and indeed eager ag-
gregation. This optimization mostly targets aggregates that
just depend on a scan and are expected to have few groups,
such as in TPC-H @1 and Q¢. In future work we intend
to implement such early aggregation for vectorized scans on
uncompressed chunks and compressed Data Blocks.
Another optimization opportunity is early probing of up-
stream hash-joins in the JIT-compiled query pipeline. When
a vectorized scan of the probe side starts running in HyPer,
the build side of the hash-joins in the JIT-compiled query
pipeline has already been materialized. There are many situ-
ations in data warehousing workloads where such hash-joins
can be very selective. For instance, this is the case when
a fact table is used to probe a restricted dimension table.
Scanning and decompressing all records of the fact table is
a waste of CPU resources; hence, if the probe side is probed

early inside the vectorized scan, touching attributes that
would be eliminated later can be avoided. To enable such

probing, systems like Vectorwise use bloom filters [29].

Probing a bloom filter is cheaper than performing a full
hash lookup, for two reasons: First, a bloom filter is a much
smaller memory object than a full hash table and thus typ-
ically fits in a lower-level CPU cache. Second, the JIT-
compiled query pipeline contains the compiled hash lookup
that performs the work in very few instructions; however,
the loop in which it is placed also contains code for all sub-
sequent operators in that query pipeline. The fact that this
code is all part of the same code path means that this path
potentially contains a large number of instructions and may
thus be too complex to be executed efficiently. As such,
even though modern out-of-order CPU cores can speculate
deeply into a stretch of instructions if they hit stalls, it is
improbable that the CPU is able to speculate through such
a complex code path all the way up to the next loop it-
eration, i.e, up to the next input tuple. This means that
in a JIT-compiled bloom filter, there is typically only one
tuple at a time being looked up in the bloom filter and if
this bloom filter is larger than the CPU cache, there will
be only one outstanding memory load at any time. This is
problematic because modern hardware is capable of handling
multiple concurrent memory misses and limiting the number
of outstanding loads available to the CPU core will make it
impossible to use the available memory bandwidth. In con-
trast, vectorized bloom filter probing as part of a vectorized
scan can be implemented as a simple loop that computes
a boolean lookup result without any inter-tuple dependen-
cies, and trivially generates the maximum number of parallel
memory loads to saturate the memory bandwidth.

HyPer has a form of early probing, very similar to bloom
filters, built into its hash table pointers (similar to tagged
hash table pointers in [20]). This early probing is already
used for tuple-at-a-time early probing in JIT-compiled pipe-
lines. An implementation of this early probing for a vector



of keys inside the vectorized scan (see Figure 14 for an ex-
ample of vectorized early probing of matching keys from
DataBlocks), directly after evaluating the SARGable predi-
cates, allowed us to gain significant performance benefits on
TPC-H Qg*Q5, Q'?*Q& Q10*Q14, and Q21*Q22 in prelim—
inary experiments. Overall, the geometric mean of query
runtime improved by 1.2x. However, performing the early
test for all joins inside the scan also slowed down a significant
number of other queries. This provides a third optimization
opportunity enabled by vectorization, namely to make query
processing adaptive. Vectorwise has proposed Micro Adap-
tivity [29] where different implementations of particular vec-
torized functions (“flavors”) are tried at runtime and perfor-
mance is monitored. Given that inside a query a vectorized
function might still be called millions of times, the micro-

F. TPC-H RESULTS

adaptive expression evaluator can experiment with the dif-
ferent flavors and stick most of the time with the flavor that
performs best at that point in time. Micro-adaptivity cap-
tures the choice of flavors automatically and makes query
performance more robust. Using such adaptive algorithms
in a tuple-at-a-time JIT-compiled query pipeline is not pos-
sible, since every binary decision opportunity in the query
pipeline duplicates the amount of possible code paths, which
again leads to high compilation times (cf., Section 4). In
vectorized scans, it is possible to employ such adaptive be-
havior and we experimented using micro-adaptivity to guide
the decision whether or not to use the early join test inside
the vectorized scan which allowed us to avoid performance
penalties.

Uncompressed Compressed

JIT scan Vectorized scan +SARG  Data Block scan +SARG/SMA +PSMA  over JIT
Q1 0.388s (45ms)  0.373s  (29ms) 0.539s 0.431s 0.477s 0.478s 0.81x
Q2 0.085s (177ms)  0.097s  (89ms) 0.086s 0.092s 0.086s 0.086s 1.00x
Q3 0.731s  (64ms)  0.723s  (34ms) 0.812s 0.711s 0.634s 0.627s 1.17x
Q4 0.491s  (50ms) 0.508s  (27ms) 0.497s 0.502s 0.457s 0.454s 1.08x
Q5 0.655s (120ms)  0.662s  (57ms) 0.645s 0.691s 0.658s 0.655s 1.00x
Q6 0.267s  (20ms)  0.180s  (1lms) 0.114s 0.188s 0.040s 0.040s 6.70%
Q7 0.600s (124ms) 0.614s  (62ms) 0.659s 0.632s 0.557s 0.548s 1.09x
Qs 0.409s (171ms)  0.420s (78ms)  0.401s 0.505s 0.4585  0.460s 0.89x
Q9 2.429s (121ms)  2.380s  (59ms) 2.357s 2.423s 2.439s 2.453s 0.99%
Q10 0.638s  (96ms)  0.633s (50ms)  0.691s 0.614s 0.521s  0.512s 1.25x%
Q11 0.094s (114ms)  0.092s  (56ms) 0.092s 0.087s 0.082s 0.081s 1.16x
Q12 0.413s  (58ms)  0.447s  (32ms) 0.430s 0.381s 0.305s 0.305s 1.35%
Q13 6.695s  (45ms)  6.766s  (27ms) 6.786s 7.260s 7.132s 7.098s 0.94x
Q14 0.466s  (41ms)  0.410s  (22ms) 0.438s 0.213s 0.145s 0.140s 3.33x
Q15 0.441s  (48ms) 0.440s  (37ms) 0.434s 0.359s 0.278s 0.275s 1.60x
Q16 0.831s  (99ms)  0.836s  (55ms) 0.842s 0.662s 0.669s 0.664s 1.25%
Q17 0.427s  (74ms)  0.439s  (41ms) 0.436s 0.504s 0.490s 0.487s 0.88x
Q18 2.496s  (91ms) 2.418s  (49ms) 2.401s 2.379s 2.366s 2.394s 1.04 %
Q19 1.061s  (70ms) 1.119s  (34ms) 1.125s 0.682s 0.528s 0.521s 2.04x
Q20 0.602s (108ms)  0.596s  (54ms) 0.610s 0.577s 0.529s 0.530s 1.14x
Q21 1.223s  (129ms) 1.176s  (65ms) 1.166s 1.212s 1.142s 1.136s 1.08x
Q22 0.265s  (81ms)  0.321s  (48ms) 0.261s 0.391s 0.278s 0.277s 0.96 %
Sum 21.708s (1945ms)  21.649s (1016ms)  21.822s 21.497s 20.271s  20.179s
Geometric mean 0.586s  (78ms) 0.583s  (42ms) 0.577s 0.555s 0.466s 0.463s 1.27x

Table 4: Query runtimes and compilation times (in parentheses) of TPC-H queries on scale factor 100 with
(i) JIT-compiled tuple-at-a-time scans on uncompressed data, (ii) vectorized scans on uncompressed data,
(iii) vectorized scans on uncompressed data with SARG-able predicate evaluation (+SARG), (iv) vector-
ized compressed Data Block scans, (v) vectorized compressed Data Block scans with SARG-able predicate
evaluation and SMAs (+SARG/SMA), and (vi) (v) with Positional SMA indexes (+PSMA).
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